In graph theory, an undirected graph H is called a minor of the graph G if H can be formed from G by deleting edges, vertices and by contracting edges. The theory of graph minors began with Wagner's theorem that a graph is planar if and only if its minors include neither the complete graph K5 nor the complete bipartite graph K3,3. The Robertson–Seymour theorem implies that an analogous forbidden minor characterization exists for every property of graphs that is preserved by deletions and edge contractions. For every fixed graph H, it is possible to test whether H is a minor of an input graph G in polynomial time; together with the forbidden minor characterization this implies that every graph property preserved by deletions and contractions may be recognized in polynomial time. Other results and conjectures involving graph minors include the graph structure theorem, according to which the graphs that do not have H as a minor may be formed by gluing together simpler pieces, and Hadwiger's conjecture relating the inability to color a graph to the existence of a large complete graph as a minor of it. Important variants of graph minors include the topological minors and immersion minors. An edge contraction is an operation that removes an edge from a graph while simultaneously merging the two vertices it used to connect. An undirected graph H is a minor of another undirected graph G if a graph isomorphic to H can be obtained from G by contracting some edges, deleting some edges, and deleting some isolated vertices. The order in which a sequence of such contractions and deletions is performed on G does not affect the resulting graph H. Graph minors are often studied in the more general context of matroid minors. In this context, it is common to assume that all graphs are connected, with self-loops and multiple edges allowed (that is, they are multigraphs rather than simple graphs); the contraction of a loop and the deletion of a cut-edge are forbidden operations.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (32)
HUM-411: Graphic design II
Le cours vise à faire découvrir les bases du design graphique, ses enjeux, ses différents domaines d'application, ses techniques et ses conventions. Il s'agit d'un enseignement pratique qui repose sur
MATH-360: Graph theory
The course aims to introduce the basic concepts and results of modern Graph Theory with special emphasis on those topics and techniques that have proved to be applicable in theoretical computer scienc
PHYS-117: Physics lab (metrology)
Ce cours est une introduction pratique aux techniques de mesure classiques d'un laboratoire de physique ayant pour but de familiariser les étudiants avec l'acquisition de données, les capteurs, l'anal
Show more
Related publications (143)
Related concepts (49)
Forbidden graph characterization
In graph theory, a branch of mathematics, many important families of graphs can be described by a finite set of individual graphs that do not belong to the family and further exclude all graphs from the family which contain any of these forbidden graphs as (induced) subgraph or minor. A prototypical example of this phenomenon is Kuratowski's theorem, which states that a graph is planar (can be drawn without crossings in the plane) if and only if it does not contain either of two forbidden graphs, the complete graph K_5 and the complete bipartite graph K_3,3.
Homeomorphism (graph theory)
In graph theory, two graphs and are homeomorphic if there is a graph isomorphism from some subdivision of to some subdivision of . If the edges of a graph are thought of as lines drawn from one vertex to another (as they are usually depicted in illustrations), then two graphs are homeomorphic to each other in the graph-theoretic sense precisely if they are homeomorphic in the topological sense. In general, a subdivision of a graph G (sometimes known as an expansion) is a graph resulting from the subdivision of edges in G.
Graph coloring
In graph theory, graph coloring is a special case of graph labeling; it is an assignment of labels traditionally called "colors" to elements of a graph subject to certain constraints. In its simplest form, it is a way of coloring the vertices of a graph such that no two adjacent vertices are of the same color; this is called a vertex coloring. Similarly, an edge coloring assigns a color to each edge so that no two adjacent edges are of the same color, and a face coloring of a planar graph assigns a color to each face or region so that no two faces that share a boundary have the same color.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.