Concept

Mineur (théorie des graphes)

Résumé
La notion de mineur d'un graphe est un concept de théorie des graphes. Il a été défini et étudié par Robertson et Seymour dans une série d'articles intitulée Graph minors (I à XXIII), publiée dans le Journal of Combinatorial Theory entre 1983 et 2011. Soit un graphe non orienté fini. Un graphe est un mineur de s'il peut être obtenu en contractant des arêtes d'un sous-graphe de . En d'autres termes, peut être obtenu à partir de en effectuant un nombre quelconque d'opérations parmi les suivantes : suppression d'un sommet isolé : le sommet est supprimé du graphe ; suppression d'une arête : on supprime l'arête , mais ses extrémités restent inchangées ; contraction d'une arête : on supprime l'arête , les deux sommets et sont fusionnés en un sommet . Toute arête ou est remplacée par une nouvelle arête . Une même arête n'est pas ajoutée deux fois (on ne crée pas d'arêtes parallèles). Cette définition est celle qui est donnée par László Lovász. On trouve des définitions différentes, mais équivalentes, dans la littérature. GraphMinorExampleB.png|Un graphe G. GraphMinorExampleA.png|Un mineur H de G. GraphMinorExampleC.svg|Passage de G à H. Dans l'exemple ci-dessus, on passe d'un graphe à son mineur en supprimant trois arêtes (en pointillés), en supprimant un sommet isolé et en contractant une arête (en gris). Une des utilités du concept de mineur est la caractérisation de classes de graphes particulières comme ayant (ou n'ayant pas) un certain graphe comme mineur. Par exemple, un graphe planaire ne contient comme mineur ni (graphe complet d'ordre 5), ni (graphe biparti complet d'ordre 3). Le théorème de Robertson-Seymour montre que l'on peut caractériser ainsi tous les graphes qui peuvent être tracés sur une surface donnée, en fonction d'un ensemble de mineurs exclus. La notion de mineur permet également d'exprimer simplement certains théorèmes ou conjectures, comme la conjecture de Hadwiger selon laquelle tout graphe dont le graphe complet à sommets n'est pas un mineur est colorable avec couleurs.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.