Tacheometry (ˌtækiˈɒmᵻtri; from Greek for "quick measure") is a system of rapid surveying, by which the horizontal and vertical positions of points on the earth's surface relative to one another are determined without using a chain or tape, or a separate levelling instrument.
Instead of the pole normally employed to mark a point, a staff similar to a level staff is used. This is marked with heights from the base or foot, and is graduated according to the form of tacheometer in use.
The horizontal distance S is inferred from the vertical angle subtended between two well-defined points on the staff and the known distance 2L between them. Alternatively, also by readings of the staff indicated by two fixed stadia wires in the diaphragm (reticle) of the telescope. The difference of height Δh is computed from the angle of depression z or angle of elevation α of a fixed point on the staff and the horizontal distance S already obtained.
The azimuth angle is determined as normally. Thus, all the measurements requisite to locate a point both vertically and horizontally with reference to the point where the tacheometer is centred are determined by an observer at the instrument without any assistance beyond that of a person to hold the level staff.
The ordinary methods of surveying with a theodolite, chain, and levelling instrument are fairly satisfactory when the ground is relatively clear of obstructions and not very precipitous, but it becomes extremely cumbersome when the ground is covered with bush, or broken up by ravines. Chain measurements then become slow and liable to considerable error; the levelling, too, is carried on at great disadvantage in point of speed, though without serious loss of accuracy. These difficulties led to the introduction of tacheometry.
In western countries, tacheometry is primarily of historical interest in surveying, as professional measurement nowadays is usually carried out using total stations and recorded using data collectors. Location positions are also determined using GNSS.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Length measurement, distance measurement, or range measurement (ranging) refers to the many ways in which length, distance, or range can be measured. The most commonly used approaches are the rulers, followed by transit-time methods and the interferometer methods based upon the speed of light. For objects such as crystals and diffraction gratings, diffraction is used with X-rays and electron beams. Measurement techniques for three-dimensional structures very small in every dimension use specialized instruments such as ion microscopy coupled with intensive computer modeling.
A total station (TS) or total station theodolite (TST) is an electronic/optical instrument used for surveying and building construction. It is an electronic transit theodolite integrated with electronic distance measurement (EDM) to measure both vertical and horizontal angles and the slope distance from the instrument to a particular point, and an on-board computer to collect data and perform triangulation calculations. Robotic or motorized total stations allow the operator to control the instrument from a distance via remote control.
A theodolite (θiˈɒdəˌlaɪt) is a precision optical instrument for measuring angles between designated visible points in the horizontal and vertical planes. The traditional use has been for land surveying, but it is also used extensively for building and infrastructure construction, and some specialized applications such as meteorology and rocket launching. It consists of a moveable telescope mounted so it can rotate around horizontal and vertical axes and provide angular readouts.
The height and/or deformation of a surface of an object (10) defined in terms of x, y and z coordinates is measured by projecting a divergent beam of light 21) onto the surface to produce a periodic pattern of fringes (30. A CCD camera (40) views the surfa ...
Electric field distributions within lightning protection volume of a single lightning rod are studied for the case of a vertical downward leader. The boundaries of volumes with the electrical strength exceeding its critical value for ionization in air are ...
Gas lubricated Herringbone-Grooved Journal Bearings (HGJB) are a promising solution to support high-speed rotors in oil-free turbo-machinery due to their compactness, relatively low losses, no need for lubrication and low wear.
Gas lubricated bearings, how ...