The thin disk is a structural component of spiral and S0-type galaxies, composed of stars, gas and dust. It is the main non-centre (e.g. galactic bulge) density, of such matter. That of the Milky Way is thought to have a scale height of around in the vertical axis perpendicular to the disk, and a scale length of around in the horizontal axis, in the direction of the radius. For comparison, the Sun is out from the center. The thin disk contributes about 85% of the stars in the Galactic plane and 95% of the total disk stars. It can be set apart from the thick disk of a galaxy since the latter is composed of older population stars created at an earlier stage of the galaxy formation and thus has fewer heavy elements. Stars in the thin disk, on the other hand, are created as a result of gas accretion at the later stages of a galaxy formation and are on average more metal-rich.
The thin disk contains stars with a wide range of ages and may be divided into a series of sub-populations of increasing age. Notwithstanding, it is considered to be considerably younger than the thick disk.
Based upon the emerging science of nucleocosmochronology, the Galactic thin disk of the Milky Way is estimated to have been formed 8.8 ± 1.7 billion years ago. It may have collided with a smaller satellite galaxy, causing the stars in the thin disk to be shaken up and creating the thick disk, while the gas would have settled into the galactic plane and reformed the thin disk.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The aim of this course is to acquire the basic knowledge on specific dynamical phenomena related to the origin, equilibrium, and evolution of star
clusters, galaxies, and galaxy clusters.
Cosmology is the study of the structure and evolution of the universe as a whole. This course describes the principal themes of cosmology, as seen
from the point of view of observations.
A galactic disc (or galactic disk) is a component of disc galaxies, such as spiral galaxies, lenticular galaxies, and the Milky Way. Galactic discs consist of a stellar component (composed of most of the galaxy's stars) and a gaseous component (mostly composed of cool gas and dust). The stellar population of galactic discs tend to exhibit very little random motion with most of its stars undergoing nearly circular orbits about the galactic center.
The Milky Way is the galaxy that includes the Solar System, with the name describing the galaxy's appearance from Earth: a hazy band of light seen in the night sky formed from stars that cannot be individually distinguished by the naked eye. The term Milky Way is a translation of the Latin via lactea, from the Greek γαλακτικὸς κύκλος (galaktikòs kýklos), meaning "milky circle". From Earth, the Milky Way appears as a band because its disk-shaped structure is viewed from within.
A galactic halo is an extended, roughly spherical component of a galaxy which extends beyond the main, visible component. Several distinct components of galaxies comprise the halo: the stellar halo the galactic corona (hot gas, i.e. a plasma) the dark matter halo The distinction between the halo and the main body of the galaxy is clearest in spiral galaxies, where the spherical shape of the halo contrasts with the flat disc. In an elliptical galaxy, there is no sharp transition between the other components of the galaxy and the halo.
We show that the IceCube observation of the Galactic neutrino-flux component confirms the hint of detection of neutrinos from the Galactic ridge (the inner part of the Milky Way disk within the Galactic longitude IlI < 30(degrees)), previously reported by ...
Most large galaxies contain Super Massive Black Holes at their centers, drawing matter nearby to form swirling accretion disks emitting electromagnetic radiation. These are Active Galactic Nuclei. The brightest quasars are the most luminous Universe object ...
EPFL2023
We report the identification of 64 new candidates of compact galaxies, potentially hosting faint quasars with bolometric luminosities of L-bol = 10(43)-10(46) erg s(-1), residing in the reionization epoch within the redshift range of 6 less than or similar ...