Neuroimaging is the use of quantitative (computational) techniques to study the structure and function of the central nervous system, developed as an objective way of scientifically studying the healthy human brain in a non-invasive manner. Increasingly it is also being used for quantitative research studies of brain disease and psychiatric illness. Neuroimaging is highly multidisciplinary involving neuroscience, computer science, psychology and statistics, and is not a medical specialty. Neuroimaging is sometimes confused with neuroradiology.
Neuroradiology is a medical specialty and uses non-statistical brain imaging in a clinical setting, practiced by radiologists who are medical practitioners. Neuroradiology primarily focuses on recognising brain lesions, such as vascular disease, strokes, tumors and inflammatory disease. In contrast to neuroimaging, neuroradiology is qualitative (based on subjective impressions and extensive clinical training) but sometimes uses basic quantitative methods. Functional brain imaging techniques, such as functional magnetic resonance imaging (fMRI), are common in neuroimaging but rarely used in neuroradiology. Neuroimaging falls into two broad categories:
Structural imaging, which is used to quantify brain structure using e,g, voxel based morphometry.
Functional imaging, which is used to study brain function, often using fMRI and other techniques such as PET and MEG (see below).
History of neuroimaging
The first chapter of the history of neuroimaging traces back to the Italian neuroscientist Angelo Mosso who invented the 'human circulation balance', which could non-invasively measure the redistribution of blood during emotional and intellectual activity.
In 1918, the American neurosurgeon Walter Dandy introduced the technique of ventriculography. X-ray images of the ventricular system within the brain were obtained by injection of filtered air directly into one or both lateral ventricles of the brain.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The goal is to guide students into the essential topics of Behavioral and Cognitive Neuroscience. The challenge for the student in this course is to integrate the diverse knowledge acquired from those
The goal of this course is to instruct the student how fundamental scientific knowledge, acquired through the study of fundamental disciplines, including biochemistry, genetics, pharmacology, physiolo
Learn how principles of basic science are integrated into major biomedical imaging modalities and the different techniques used, such as X-ray computed tomography (CT), ultrasounds and positron emissi
Learn how principles of basic science are integrated into major biomedical imaging modalities and the different techniques used, such as X-ray computed tomography (CT), ultrasounds and positron emissi
Statistical parametric mapping (SPM) is a statistical technique for examining differences in brain activity recorded during functional neuroimaging experiments. It was created by Karl Friston. It may alternatively refer to software created by the Wellcome Department of Imaging Neuroscience at University College London to carry out such analyses. Functional neuroimaging is one type of 'brain scanning'. It involves the measurement of brain activity. The measurement technique depends on the imaging technology (e.
Neural engineering (also known as neuroengineering) is a discipline within biomedical engineering that uses engineering techniques to understand, repair, replace, or enhance neural systems. Neural engineers are uniquely qualified to solve design problems at the interface of living neural tissue and non-living constructs (Hetling, 2008). The field of neural engineering draws on the fields of computational neuroscience, experimental neuroscience, neurology, electrical engineering and signal processing of living neural tissue, and encompasses elements from robotics, cybernetics, computer engineering, neural tissue engineering, materials science, and nanotechnology.
Neuromarketing is a commercial marketing communication field that applies neuropsychology to market research, studying consumers' sensorimotor, cognitive, and affective responses to marketing stimuli. The potential benefits to marketers include more efficient and effective marketing campaigns and strategies, fewer product and campaign failures, and ultimately the manipulation of the real needs and wants of people to suit the needs and wants of marketing interests.
In the last twenty years, advances in real-time functional magnetic resonance imaging (rt-fMRI) have offered exciting new tools to study the human brain. One of them, termed rt-fMRI neurofeedback (NF)
Grid cells are place-modulated neurons that encode the location of an agent in space, relying on the integration of various sensorimotor signals from the body. Of note, the integration of those signal
Null models are useful for assessing whether a dataset exhibits a non-trivial property of interest. These models have recently gained interest in the neuroimaging community as means to explore dynamic