Concept

Cyclopentadienyliron dicarbonyl dimer

Cyclopentadienyliron dicarbonyl dimer is an organometallic compound with the formula [(η5-C5H5)Fe(CO)2]2, often abbreviated to Cp2Fe2(CO)4, [CpFe(CO)2]2 or even Fp2, with the colloquial name "fip dimer". It is a dark reddish-purple crystalline solid, which is readily soluble in moderately polar organic solvents such as chloroform and pyridine, but less soluble in carbon tetrachloride and carbon disulfide. Cp2Fe2(CO)4 is insoluble in but stable toward water. Cp2Fe2(CO)4 is reasonably stable to storage under air and serves as a convenient starting material for accessing other Fp (CpFe(CO)2) derivatives (described below). In solution, Cp2Fe2(CO)4 can be considered a dimeric half-sandwich complex. It exists in three isomeric forms: cis, trans, and an unbridged, open form. These isomeric forms are distinguished by the position of the ligands. The cis and trans isomers differ in the relative position of C5H5 (Cp) ligands. The cis and trans isomers have the formulation [(η5-C5H5)Fe(CO)(μ-CO)]2, that is, two CO ligands are terminal whereas the other two CO ligands bridge between the iron atoms. The cis and trans isomers interconvert via the open isomer, which has no bridging ligands between iron atoms. Instead, it is formulated as (η5-C5H5)(OC)2Fe−Fe(CO)2(η5-C5H5) — the metals are held together by an iron–iron bond. At equilibrium, the cis and trans isomers are predominant. In addition, the terminal and bridging carbonyls are known to undergo exchange: the trans isomer can undergo bridging–terminal CO ligand exchange through the open isomer, or through a twisting motion without going through the open form. In contrast, the bridging and terminal CO ligands of the cis isomer can only exchange via the open isomer. In solution, the cis, trans, and open isomers interconvert rapidly at room temperature, making the molecular structure fluxional. The fluxional process for cyclopentadienyliron dicarbonyl dimer is faster than the NMR time scale, so that only an averaged, single Cp signal is observed in the 1H NMR spectrum at 25 °C.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.