AlternativityIn abstract algebra, alternativity is a property of a binary operation. A magma G is said to be if for all and if for all A magma that is both left and right alternative is said to be (). Any associative magma (that is, a semigroup) is alternative. More generally, a magma in which every pair of elements generates an associative submagma must be alternative. The converse, however, is not true, in contrast to the situation in alternative algebras. In fact, an alternative magma need not even be power-associative.
Moufang loopIn mathematics, a Moufang loop is a special kind of algebraic structure. It is similar to a group in many ways but need not be associative. Moufang loops were introduced by . Smooth Moufang loops have an associated algebra, the Malcev algebra, similar in some ways to how a Lie group has an associated Lie algebra. A Moufang loop is a loop that satisfies the four following equivalent identities for all , , in (the binary operation in is denoted by juxtaposition): These identities are known as Moufang identities.
Non-associative algebraA non-associative algebra (or distributive algebra) is an algebra over a field where the binary multiplication operation is not assumed to be associative. That is, an algebraic structure A is a non-associative algebra over a field K if it is a vector space over K and is equipped with a K-bilinear binary multiplication operation A × A → A which may or may not be associative. Examples include Lie algebras, Jordan algebras, the octonions, and three-dimensional Euclidean space equipped with the cross product operation.
Alternative algebraIn abstract algebra, an alternative algebra is an algebra in which multiplication need not be associative, only alternative. That is, one must have for all x and y in the algebra. Every associative algebra is obviously alternative, but so too are some strictly non-associative algebras such as the octonions. Alternative algebras are so named because they are the algebras for which the associator is alternating. The associator is a trilinear map given by By definition, a multilinear map is alternating if it vanishes whenever two of its arguments are equal.
Algebra over a fieldIn mathematics, an algebra over a field (often simply called an algebra) is a vector space equipped with a bilinear product. Thus, an algebra is an algebraic structure consisting of a set together with operations of multiplication and addition and scalar multiplication by elements of a field and satisfying the axioms implied by "vector space" and "bilinear". The multiplication operation in an algebra may or may not be associative, leading to the notions of associative algebras and non-associative algebras.
SemigroupIn mathematics, a semigroup is an algebraic structure consisting of a set together with an associative internal binary operation on it. The binary operation of a semigroup is most often denoted multiplicatively (just notation, not necessarily the elementary arithmetic multiplication): x·y, or simply xy, denotes the result of applying the semigroup operation to the ordered pair (x, y). Associativity is formally expressed as that (x·y)·z = x·(y·z) for all x, y and z in the semigroup.
Associative propertyIn mathematics, the associative property is a property of some binary operations, which means that rearranging the parentheses in an expression will not change the result. In propositional logic, associativity is a valid rule of replacement for expressions in logical proofs. Within an expression containing two or more occurrences in a row of the same associative operator, the order in which the operations are performed does not matter as long as the sequence of the operands is not changed.