Concept

Moufang loop

In mathematics, a Moufang loop is a special kind of algebraic structure. It is similar to a group in many ways but need not be associative. Moufang loops were introduced by . Smooth Moufang loops have an associated algebra, the Malcev algebra, similar in some ways to how a Lie group has an associated Lie algebra. A Moufang loop is a loop that satisfies the four following equivalent identities for all , , in (the binary operation in is denoted by juxtaposition): These identities are known as Moufang identities. Any group is an associative loop and therefore a Moufang loop. The nonzero octonions form a nonassociative Moufang loop under octonion multiplication. The subset of unit norm octonions (forming a 7-sphere in O) is closed under multiplication and therefore forms a Moufang loop. The subset of unit norm integral octonions is a finite Moufang loop of order 240. The basis octonions and their additive inverses form a finite Moufang loop of order 16. The set of invertible split-octonions forms a nonassociative Moufang loop, as does the set of unit norm split-octonions. More generally, the set of invertible elements in any octonion algebra over a field F forms a Moufang loop, as does the subset of unit norm elements. The set of all invertible elements in an alternative ring R forms a Moufang loop called the loop of units in R. For any field F let M(F) denote the Moufang loop of unit norm elements in the (unique) split-octonion algebra over F. Let Z denote the center of M(F). If the characteristic of F is 2 then Z = {e}, otherwise Z = {±e}. The Paige loop over F is the loop M*(F) = M(F)/Z. Paige loops are nonassociative simple Moufang loops. All finite nonassociative simple Moufang loops are Paige loops over finite fields. The smallest Paige loop M*(2) has order 120. A large class of nonassociative Moufang loops can be constructed as follows. Let G be an arbitrary group. Define a new element u not in G and let M(G,2) = G ∪ (G u). The product in M(G,2) is given by the usual product of elements in G together with and It follows that and .

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.