Concept

Cdc25

Summary
Cdc25 is a dual-specificity phosphatase first isolated from the yeast Schizosaccharomyces pombe as a cell cycle defective mutant. As with other cell cycle proteins or genes such as Cdc2 and Cdc4, the "cdc" in its name refers to "cell division control". Dual-specificity phosphatases are considered a sub-class of protein tyrosine phosphatases. By removing inhibitory phosphate residues from target cyclin-dependent kinases (Cdks), Cdc25 proteins control entry into and progression through various phases of the cell cycle, including mitosis and S ("Synthesis") phase. Cdc25 activates cyclin dependent kinases by removing phosphate from residues in the Cdk active site. In turn, the phosphorylation by M-Cdk (a complex of Cdk1 and cyclin B) activates Cdc25. Together with Wee1, M-Cdk activation is switch-like. The switch-like behavior forces entry into mitosis to be quick and irreversible. Cdk activity can be reactivated after dephosphorylation by Cdc25. The Cdc25 enzymes Cdc25A-C are known to control the transitions from G1 to S phase and G2 to M phase. The structure of Cdc25 proteins can be divided into two main regions: the N-terminal region, which is highly divergent and contains sites for its phosphorylation and ubiquitination, which regulate the phosphatase activity; and the C-terminal region, which is highly homologous and contains the catalytic site. Cdc25 enzymes are well conserved through evolution, and have been isolated from fungi such as yeasts as well as all metazoans examined to date, including humans. The exception among eukaryotes may be plants, as the purported plant Cdc25s have characteristics, (such as the use of cations for catalysis), that are more akin to serine/threonine phosphatases than dual-specificity phosphatases, raising doubts as to their authenticity as Cdc25 phosphatases. The Cdc25 family appears to have expanded in relation to the complexity of the cell-cycle and life-cycle of higher animals. Yeasts have a single Cdc25 (as well as a distantly related enzyme known as Itsy-bitsy phosphatase 1, or Ibp1).
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.