**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Concept# Hilbert curve

Summary

The Hilbert curve (also known as the Hilbert space-filling curve) is a continuous fractal space-filling curve first described by the German mathematician David Hilbert in 1891, as a variant of the space-filling Peano curves discovered by Giuseppe Peano in 1890.
Because it is space-filling, its Hausdorff dimension is 2 (precisely, its image is the unit square, whose dimension is 2 in any definition of dimension; its graph is a compact set homeomorphic to the closed unit interval, with Hausdorff dimension 2).
The Hilbert curve is constructed as a limit of piecewise linear curves. The length of the th curve is , i.e., the length grows exponentially with , even though each curve is contained in a square with area .
File:Hilbert curve 1.svg|Hilbert curve, first order
File:Hilbert curve 2.svg|Hilbert curves, first and second orders
File:Hilbert curve 3.svg|Hilbert curves, first to third orders
File:Hilbert curve production rules!.svg|Production rules
File:Hilbert.png|Hilbert curve, construction color-coded
File:Hilbert3d-step3.png|A 3-D Hilbert curve with color showing progression
File:Courbe de Hilbert.jpg|Variant, first three iterationsBourges, Pascale. "[http://pascale.et.vincent.bourges.pagesperso-orange.fr/fractales%20et%20chaos1/Chapitre%201.htm Chapitre 1: fractales]", ''Fractales et chaos''. Accessed: 9 February 2019.
Both the true Hilbert curve and its discrete approximations are useful because they give a mapping between 1D and 2D space that preserves locality fairly well. This means that two data points which are close to each other in one-dimensional space are also close to each other after folding. The converse cannot always be true.
Because of this locality property, the Hilbert curve is widely used in computer science. For example, the range of IP addresses used by computers can be mapped into a picture using the Hilbert curve. Code to generate the image would map from 2D to 1D to find the color of each pixel, and the Hilbert curve is sometimes used because it keeps nearby IP addresses close to each other in the picture.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related courses (2)

Related concepts (5)

Related lectures (46)

Geohash

Geohash is a public domain geocode system invented in 2008 by Gustavo Niemeyer which encodes a geographic location into a short string of letters and digits. Similar ideas were introduced by G.M. Morton in 1966. It is a hierarchical spatial data structure which subdivides space into buckets of grid shape, which is one of the many applications of what is known as a Z-order curve, and generally space-filling curves. Geohashes offer properties like arbitrary precision and the possibility of gradually removing characters from the end of the code to reduce its size (and gradually lose precision).

Hilbert curve

The Hilbert curve (also known as the Hilbert space-filling curve) is a continuous fractal space-filling curve first described by the German mathematician David Hilbert in 1891, as a variant of the space-filling Peano curves discovered by Giuseppe Peano in 1890. Because it is space-filling, its Hausdorff dimension is 2 (precisely, its image is the unit square, whose dimension is 2 in any definition of dimension; its graph is a compact set homeomorphic to the closed unit interval, with Hausdorff dimension 2).

Space-filling curve

In mathematical analysis, a space-filling curve is a curve whose range reaches every point in a higher dimensional region, typically the unit square (or more generally an n-dimensional unit hypercube). Because Giuseppe Peano (1858–1932) was the first to discover one, space-filling curves in the 2-dimensional plane are sometimes called Peano curves, but that phrase also refers to the Peano curve, the specific example of a space-filling curve found by Peano.

Nonlinear Systems: Phase Portrait Analysis

Explores nonlinear systems through phase portraits in 2D, focusing on vector fields, isoclines, and trajectories.

Mathematical Analysis of Genetic Circuits

Explores the mathematical analysis of genetic circuits and the implementation of synthetic plasmids in E. coli, focusing on the concept of limit cycle oscillators.

Modeling Gene Expression

Explores modeling gene expression, fixed points analysis, and stability in biological systems.

Ce cours introduit les systèmes dynamiques pour modéliser des réseaux biologiques simples. L'analyse qualitative de modèles dynamiques non-linéaires est développée de pair avec des simulations numériq

Ce cours traite des 3 sujets suivants : la perspective, la géométrie descriptive, et une initiation à la géométrie projective.