55 (five) is a number, numeral and digit. It is the natural number, and cardinal number, following 4 and preceding 6, and is a prime number. It has garnered attention throughout history in part because distal extremities in humans typically contain five digits. The evolution of the modern Western digit for the numeral 5 cannot be traced back to the Indian system, as for the digits 1 to 4. The Kushana and Gupta empires in what is now India had among themselves several forms that bear no resemblance to the modern digit.
Prime quadrupletIn number theory, a prime quadruplet (sometimes called prime quadruple) is a set of four prime numbers of the form {p,\ p+2,\ p+6,\ p+8}. This represents the closest possible grouping of four primes larger than 3, and is the only prime constellation of length 4. The first eight prime quadruplets are: {5, 7, 11, 13}, {11, 13, 17, 19}, {101, 103, 107, 109}, {191, 193, 197, 199}, {821, 823, 827, 829}, {1481, 1483, 1487, 1489}, {1871, 1873, 1877, 1879}, {2081, 2083, 2087, 2089} All prime quadruplets except {5, 7, 11, 13} are of the form {30n + 11, 30n + 13, 30n + 17, 30n + 19} for some integer n.
13 (number)13 (thirteen) is the natural number following 12 and preceding 14. Strikingly folkloric aspects of the number 13 have been noted in various cultures around the world: one theory is that this is due to the cultures employing lunar-solar calendars (there are approximately 12.41 lunations per solar year, and hence 12 "true months" plus a smaller, and often portentous, thirteenth month). This can be witnessed, for example, in the "Twelve Days of Christmas" of Western European tradition. The number 13 is the sixth prime number.
11 (number)11 (eleven) is the natural number following 10 and preceding 12. It is the first repdigit. In English, it is the smallest positive integer whose name has three syllables. "Eleven" derives from the Old English ęndleofon, which is first attested in Bede's late 9th-century Ecclesiastical History of the English People. It has cognates in every Germanic language (for example, German elf), whose Proto-Germanic ancestor has been reconstructed as *ainalifa-, from the prefix *aina- (adjectival "one") and suffix *-lifa-, of uncertain meaning.
Eisenstein integerIn mathematics, the Eisenstein integers (named after Gotthold Eisenstein), occasionally also known as Eulerian integers (after Leonhard Euler), are the complex numbers of the form where a and b are integers and is a primitive (hence non-real) cube root of unity. The Eisenstein integers form a triangular lattice in the complex plane, in contrast with the Gaussian integers, which form a square lattice in the complex plane. The Eisenstein integers are a countably infinite set.
24 (number)24 (twenty-four) is the natural number following 23 and preceding 25. 24 is an even composite number, with 2 and 3 as its distinct prime factors. It is the first number of the form 2^qq, where q is an odd prime. It is the smallest number with at least eight positive divisors: 1, 2, 3, 4, 6, 8, 12, and 24; thus, it is a highly composite number, having more divisors than any smaller number. Furthermore, it is an abundant number, since the sum of its proper divisors (36) is greater than itself, as well as a superabundant number.
17 (number)17 (seventeen) is the natural number following 16 and preceding 18. It is a prime number. Seventeen is the sum of the first four prime numbers. Seventeen is the seventh prime number, which makes it the fourth super-prime, as seven is itself prime. It forms a twin prime with 19, a cousin prime with 13, and a sexy prime with both 11 and 23. Seventeen is the only prime number which is the sum of four consecutive primes (2, 3, 5, and 7), as any other four consecutive primes that are added always generate an even number divisible by two.
Supersingular prime (moonshine theory)In the mathematical branch of moonshine theory, a supersingular prime is a prime number that divides the order of the Monster group M, which is the largest sporadic simple group. There are precisely fifteen supersingular prime numbers: the first eleven primes (2, 3, 5, 7, 11, 13, 17, 19, 23, 29, and 31), as well as 41, 47, 59, and 71. The non-supersingular primes are 37, 43, 53, 61, 67, and any prime number greater than or equal to 73. Supersingular primes are related to the notion of supersingular elliptic curves as follows.
PrimorialIn mathematics, and more particularly in number theory, primorial, denoted by "#", is a function from natural numbers to natural numbers similar to the factorial function, but rather than successively multiplying positive integers, the function only multiplies prime numbers. The name "primorial", coined by Harvey Dubner, draws an analogy to primes similar to the way the name "factorial" relates to factors. For the nth prime number pn, the primorial pn# is defined as the product of the first n primes: where pk is the kth prime number.
Safe and Sophie Germain primesIn number theory, a prime number p is a Sophie Germain prime if 2p + 1 is also prime. The number 2p + 1 associated with a Sophie Germain prime is called a safe prime. For example, 11 is a Sophie Germain prime and 2 × 11 + 1 = 23 is its associated safe prime. Sophie Germain primes are named after French mathematician Sophie Germain, who used them in her investigations of Fermat's Last Theorem. One attempt by Germain to prove Fermat’s Last Theorem was to let p be a prime number of the form 8k + 7 and to let n = p – 1.