17 (seventeen) is the natural number following 16 and preceding 18. It is a prime number.
Seventeen is the sum of the first four prime numbers.
Seventeen is the seventh prime number, which makes it the fourth super-prime, as seven is itself prime. It forms a twin prime with 19, a cousin prime with 13, and a sexy prime with both 11 and 23. Seventeen is the only prime number which is the sum of four consecutive primes (2, 3, 5, and 7), as any other four consecutive primes that are added always generate an even number divisible by two. It is one of six lucky numbers of Euler which produce primes of the form , and the sixth Mersenne prime exponent, which yields 131,071. It is also the minimum possible number of givens for a sudoku puzzle with a unique solution. 17 can be written in the form and ; and as such, it is a Leyland prime and Leyland prime of the second kind:
17 is the third Fermat prime, as it is of the form with . On the other hand, the seventeenth Jacobsthal–Lucas number — that is part of a sequence which includes four Fermat primes (except for 3) — is the fifth and largest known Fermat prime: 65,537. It is one more than the smallest number with exactly seventeen divisors, 65,536 = 216. Since seventeen is a Fermat prime, regular heptadecagons can be constructed with a compass and unmarked ruler. This was proven by Carl Friedrich Gauss and ultimately led him to choose mathematics over philology for his studies.
Either 16 or 18 unit squares can be formed into rectangles with perimeter equal to the area; and there are no other natural numbers with this property. The Platonists regarded this as a sign of their peculiar propriety; and Plutarch notes it when writing that the Pythagoreans "utterly abominate" 17, which "bars them off from each other and disjoins them".
17 is the minimum number of vertices on a graph such that, if the edges are colored with three different colors, there is bound to be a monochromatic triangle; see Ramsey's theorem.
There are also:
17 crystallographic space groups in two dimensions.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
5 (five) is a number, numeral and digit. It is the natural number, and cardinal number, following 4 and preceding 6, and is a prime number. It has garnered attention throughout history in part because distal extremities in humans typically contain five digits. The evolution of the modern Western digit for the numeral 5 cannot be traced back to the Indian system, as for the digits 1 to 4. The Kushana and Gupta empires in what is now India had among themselves several forms that bear no resemblance to the modern digit.
7 (seven) is the natural number following 6 and preceding 8. It is the only prime number preceding a cube. As an early prime number in the series of positive integers, the number seven has greatly symbolic associations in religion, mythology, superstition and philosophy. The seven Classical planets resulted in seven being the number of days in a week. It is often considered lucky in Western culture and is often seen as highly symbolic. Unlike Western culture, in Vietnamese culture, the number seven is sometimes considered unlucky.
In mathematics, a Fermat number, named after Pierre de Fermat, the first known to have studied them, is a positive integer of the form where n is a non-negative integer. The first few Fermat numbers are: 3, 5, 17, 257, 65537, 4294967297, 18446744073709551617, ... . If 2k + 1 is prime and k > 0, then k itself must be a power of 2, so 2k + 1 is a Fermat number; such primes are called Fermat primes. , the only known Fermat primes are F0 = 3, F1 = 5, F2 = 17, F3 = 257, and F4 = 65537 ; heuristics suggest that there are no more.
Computations of irregular primes and associated cyclotomic invariants were extended to all primes up to twelve million using multisectioning/convolution methods and a novel approach which originated in the study of Stickelberger codes (Shokrollahi (1996)). ...