In molecular biology, an inducer is a molecule that regulates gene expression. An inducer functions in two ways; namely:
By disabling repressors. The gene is expressed because an inducer binds to the repressor. The binding of the inducer to the repressor prevents the repressor from binding to the operator. RNA polymerase can then begin to transcribe operon genes.
By binding to activators. Activators generally bind poorly to activator DNA sequences unless an inducer is present. Activator binds to an inducer and the complex binds to the activation sequence and activates target gene. Removing the inducer stops transcription.
Because a small inducer molecule is required, the increased expression of the target gene is called induction. The lactose operon is one example of an inducible system.
Repressor proteins bind to the DNA strand and prevent RNA polymerase from being able to attach to the DNA and synthesize mRNA. Inducers bind to repressors, causing them to change shape and preventing them from binding to DNA. Therefore, they allow transcription, and thus gene expression, to take place.
For a gene to be expressed, its DNA sequence must be copied (in a process known as transcription) to make a smaller, mobile molecule called messenger RNA (mRNA), which carries the instructions for making a protein to the site where the protein is manufactured (in a process known as translation). Many different types of proteins can affect the level of gene expression by promoting or preventing transcription. In prokaryotes (such as bacteria), these proteins often act on a portion of DNA known as the operator at the beginning of the gene. The promoter is where RNA polymerase, the enzyme that copies the genetic sequence and synthesizes the mRNA, attaches to the DNA strand.
Some genes are modulated by activators, which have the opposite effect on gene expression as repressors. Inducers can also bind to activator proteins, allowing them to bind to the operator DNA where they promote RNA transcription.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The L-arabinose operon, also called the ara or araBAD operon''', is an operon required for the breakdown of the five-carbon sugar L-arabinose in Escherichia coli. The L-arabinose operon contains three structural genes: araB, araA, araD (collectively known as araBAD), which encode for three metabolic enzymes that are required for the metabolism of L-arabinose. AraB (ribulokinase), AraA (an isomerase), AraD (an epimerase) produced by these genes catalyse conversion of L-arabinose to an intermediate of the pentose phosphate pathway, D-xylulose-5-phosphate.
Biology is the scientific study of life. It is a natural science with a broad scope but has several unifying themes that tie it together as a single, coherent field. For instance, all organisms are made up of cells that process hereditary information encoded in genes, which can be transmitted to future generations. Another major theme is evolution, which explains the unity and diversity of life. Energy processing is also important to life as it allows organisms to move, grow, and reproduce.
In biology, the word gene (from γένος, génos; meaning generation or birth or gender) can have several different meanings. The Mendelian gene is a basic unit of heredity and the molecular gene is a sequence of nucleotides in DNA that is transcribed to produce a functional RNA. There are two types of molecular genes: protein-coding genes and noncoding genes. During gene expression, the DNA is first copied into RNA. The RNA can be directly functional or be the intermediate template for a protein that performs a function.
This advanced Bachelor/Master level course will cover fundamentals and approaches at the interface of biology, chemistry, engineering and computer science for diverse fields of synthetic biology. This
Le but du cours est de fournir un aperçu général de la biologie des cellules et des organismes. Nous en discuterons dans le contexte de la vie des cellules et des organismes, en mettant l'accent sur l
This course will cover the fundamental principles governing life and the living world. Topics will include the diversity of living organisms, cellular biology, genetics, evolution, and ecology. This c
Ce cours décrit les mécanismes fondamentaux du système immunitaire. Ses connaissances seront ensuite utilisées pour mieux comprendre les bases immunologiques de la vaccination, de la transplantation,
Ce cours décrit les mécanismes fondamentaux du système immunitaire pour mieux comprendre les bases immunologiques dela vaccination, de la transplantation, de l’immunothérapie, de l'allergie et des mal
Explores the regulation of transcription and translation processes, focusing on control mechanisms and alternative splicing in eukaryotes.
Explores prokaryotic transcription, operons, sigma factors, gene regulation, and DNA loops in bacteria.
Covers genetic circuits in synthetic biology, including metabolic engineering, lac operon regulation, and synthetic circuit design.
Inflammation stands as a dynamic and intricate biological process, promoting vital defence mechanisms against harmful stimuli, including infections and injuries, to drive pathogen clearance and healing. On one hand, these responses can manifest acutely and ...
Cell labeling technologies, including the Cre/loxP system, are powerful tools in developmental biology. Although the conventional Cre/loxP system has been extensively used to label the expression of specific genes, it is less frequently used for labeling p ...
Diauxie, or the sequential consumption of carbohydrates in bacteria such as Escherichia coli, has been hypothesized to be an evolutionary strategy which allows the organism to maximize its instantaneous specific growth-giving the bacterium a competitive ad ...