Concept

BLAST (biotechnology)

Summary
In bioinformatics, BLAST (basic local alignment search tool) is an algorithm and program for comparing primary biological sequence information, such as the amino-acid sequences of proteins or the nucleotides of DNA and/or RNA sequences. A BLAST search enables a researcher to compare a subject protein or nucleotide sequence (called a query) with a library or database of sequences, and identify database sequences that resemble the query sequence above a certain threshold. For example, following the discovery of a previously unknown gene in the mouse, a scientist will typically perform a BLAST search of the human genome to see if humans carry a similar gene; BLAST will identify sequences in the human genome that resemble the mouse gene based on similarity of sequence. BLAST, which The New York Times called the Google of biological research, is one of the most widely used bioinformatics programs for sequence searching. It addresses a fundamental problem in bioinformatics research. The heuristic algorithm it uses is much faster than other approaches, such as calculating an optimal alignment. This emphasis on speed is vital to making the algorithm practical on the huge genome databases currently available, although subsequent algorithms can be even faster. Before BLAST, FASTA was developed by David J. Lipman and William R. Pearson in 1985. BLAST came from the 1990 stochastic model of Samuel Karlin and Stephen Altschul They proposed "a method for estimating similarities between the known DNA sequence of one organism with that of another", and their work has been described as "the statistical foundation for BLAST." Subsequently, Altschul, along with Warren Gish, Webb Miller, Eugene Myers, and David J. Lipman at the National Institutes of Health designed the BLAST algorithm, which was published in the Journal of Molecular Biology in 1990 and cited over 75,000 times. While BLAST is faster than any Smith-Waterman implementation for most cases, it cannot "guarantee the optimal alignments of the query and database sequences" as Smith-Waterman algorithm does.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.