Liebig's law of the minimum, often simply called Liebig's law or the law of the minimum, is a principle developed in agricultural science by Carl Sprengel (1840) and later popularized by Justus von Liebig. It states that growth is dictated not by total resources available, but by the scarcest resource (limiting factor). The law has also been applied to biological populations and ecosystem models for factors such as sunlight or mineral nutrients.
This was originally applied to plant or crop growth, where it was found that increasing the amount of plentiful nutrients did not increase plant growth. Only by increasing the amount of the limiting nutrient (the one most scarce in relation to "need") was the growth of a plant or crop improved. This principle can be summed up in the aphorism, "The availability of the most abundant nutrient in the soil is only as good as the availability of the least abundant nutrient in the soil." Or the rough analog, "A chain is only as strong as its weakest link." Though diagnosis of limiting factors to crop yields is a common study, the approach has been criticized.
Liebig's law has been extended to biological populations (and is commonly used in ecosystem modelling). For example, the growth of an organism such as a plant may be dependent on a number of different factors, such as sunlight or mineral nutrients (e.g., nitrate or phosphate). The availability of these may vary, such that at any given time one is more limiting than the others. Liebig's law states that growth only occurs at the rate permitted by the most limiting factor.
For instance, in the equation below, the growth of population is a function of the minimum of three Michaelis-Menten terms representing limitation by factors , and .
The use of the equation is limited to a situation where there are steady state ceteris paribus conditions, and factor interactions are tightly controlled.
In human nutrition, the law of the minimum was used by William Cumming Rose to determine the essential amino acids.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course introduces the basic principles of bioprocess engineering and highlights the similarities and differences with chemical engineering. Without going into the fundamentals, it proposes an ove
This course aims at a more advanced coverage of the basic aspects discussed in module ChE-311. It is however of a stand-alone nature, and even students who have little knowledge on - but a keen intere
A limiting factor is a variable of a system that causes a noticeable change in output or another measure of a type of system. The limiting factor is in a pyramid shape of organisms going up from the producers to consumers and so on. A factor not limiting over a certain domain of starting conditions may yet be limiting over another domain of starting conditions, including that of the factor. The identification of a factor as limiting is possible only in distinction to one or more other factors that are non-limiting.
Phosphorus is a chemical element with the symbol P and atomic number 15. Elemental phosphorus exists in two major forms, white phosphorus and red phosphorus, but because it is highly reactive, phosphorus is never found as a free element on Earth. It has a concentration in the Earth's crust of about one gram per kilogram (compare copper at about 0.06 grams). In minerals, phosphorus generally occurs as phosphate. Elemental phosphorus was first isolated as white phosphorus in 1669.
Soil, also commonly referred to as earth, is a mixture of organic matter, minerals, gases, liquids, and organisms that together support life of plants and soil organisms. Some scientific definitions distinguish dirt from soil by restricting the former term specifically to displaced soil. Soil consists of a solid phase of minerals and organic matter (the soil matrix), as well as a porous phase that holds gases (the soil atmosphere) and water (the soil solution). Accordingly, soil is a three-state system of solids, liquids, and gases.
Nonmycorrhizal root-colonizing fungi are key determinants of plant growth, driving processes ranging from pathogenesis to stress alleviation. Evidence suggests that they might also facilitate host access to soil nutrients in a mycorrhiza-like manner, but t ...
Cells consume extra-cellular nutrients and resources to maintain cellular fitness. Extra-cellular conditions vary over time. Cellular programs encoded in genes adjust to adapt to the environments. Gene regulatory networks (GRNs) have evolved to be responsi ...
The estimation of plant-available soil water (PASW) is essential to quantify transpiration fluxes, the onset of heatwaves, irrigation water management, land-use decisions, vegetation ecology, and land surface memory in climate models. PASW is the amount of ...