Concept

Kolmogorov automorphism

In mathematics, a Kolmogorov automorphism, K-automorphism, K-shift or K-system is an invertible, measure-preserving automorphism defined on a standard probability space that obeys Kolmogorov's zero–one law. All Bernoulli automorphisms are K-automorphisms (one says they have the K''-property), but not vice versa. Many ergodic dynamical systems have been shown to have the K-property, although more recent research has shown that many of these are in fact Bernoulli automorphisms. Although the definition of the K-property seems reasonably general, it stands in sharp distinction to the Bernoulli automorphism. In particular, the Ornstein isomorphism theorem does not apply to K-systems, and so the entropy is not sufficient to classify such systems – there exist uncountably many non-isomorphic K-systems with the same entropy. In essence, the collection of K-systems is large, messy and uncategorized; whereas the B-automorphisms are 'completely' described by Ornstein theory. Let be a standard probability space, and let be an invertible, measure-preserving transformation. Then is called a K-automorphism, K-transform or K-shift, if there exists a sub-sigma algebra such that the following three properties hold: Here, the symbol is the join of sigma algebras, while is set intersection. The equality should be understood as holding almost everywhere, that is, differing at most on a set of measure zero. Assuming that the sigma algebra is not trivial, that is, if , then It follows that K-automorphisms are strong mixing. All Bernoulli automorphisms are K-automorphisms, but not vice versa. Kolmogorov automorphisms are precisely the natural extensions of exact endomorphisms, i.e. mappings for which consists of measure-zero sets or their complements, where is the sigma-algebra of measureable sets,. Christopher Hoffman, "A K counterexample machine", Trans. Amer. Math. Soc.'' 351 (1999), pp 4263–4280.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.