Concept

Kolmogorov automorphism

In mathematics, a Kolmogorov automorphism, K-automorphism, K-shift or K-system is an invertible, measure-preserving automorphism defined on a standard probability space that obeys Kolmogorov's zero–one law. All Bernoulli automorphisms are K-automorphisms (one says they have the K''-property), but not vice versa. Many ergodic dynamical systems have been shown to have the K-property, although more recent research has shown that many of these are in fact Bernoulli automorphisms. Although the definition of the K-property seems reasonably general, it stands in sharp distinction to the Bernoulli automorphism. In particular, the Ornstein isomorphism theorem does not apply to K-systems, and so the entropy is not sufficient to classify such systems – there exist uncountably many non-isomorphic K-systems with the same entropy. In essence, the collection of K-systems is large, messy and uncategorized; whereas the B-automorphisms are 'completely' described by Ornstein theory. Let be a standard probability space, and let be an invertible, measure-preserving transformation. Then is called a K-automorphism, K-transform or K-shift, if there exists a sub-sigma algebra such that the following three properties hold: Here, the symbol is the join of sigma algebras, while is set intersection. The equality should be understood as holding almost everywhere, that is, differing at most on a set of measure zero. Assuming that the sigma algebra is not trivial, that is, if , then It follows that K-automorphisms are strong mixing. All Bernoulli automorphisms are K-automorphisms, but not vice versa. Kolmogorov automorphisms are precisely the natural extensions of exact endomorphisms, i.e. mappings for which consists of measure-zero sets or their complements, where is the sigma-algebra of measureable sets,. Christopher Hoffman, "A K counterexample machine", Trans. Amer. Math. Soc.'' 351 (1999), pp 4263–4280.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.