Epigram (programming language)Epigram is a functional programming language with dependent types, and the integrated development environment (IDE) usually packaged with the language. Epigram's type system is strong enough to express program specifications. The goal is to support a smooth transition from ordinary programming to integrated programs and proofs whose correctness can be checked and certified by the compiler. Epigram exploits the Curry–Howard correspondence, also termed the propositions as types principle, and is based on intuitionistic type theory.
Parametric polymorphismIn programming languages and type theory, parametric polymorphism allows a single piece of code to be given a "generic" type, using variables in place of actual types, and then instantiated with particular types as needed. Parametrically polymorphic functions and data types are sometimes called generic functions and generic datatypes, respectively, and they form the basis of generic programming. Parametric polymorphism may be contrasted with ad hoc polymorphism.
Intuitionistic type theoryIntuitionistic type theory (also known as constructive type theory, or Martin-Löf type theory) is a type theory and an alternative foundation of mathematics. Intuitionistic type theory was created by Per Martin-Löf, a Swedish mathematician and philosopher, who first published it in 1972. There are multiple versions of the type theory: Martin-Löf proposed both intensional and extensional variants of the theory and early impredicative versions, shown to be inconsistent by Girard's paradox, gave way to predicative versions.
Function typeIn computer science and mathematical logic, a function type (or arrow type or exponential) is the type of a variable or parameter to which a function has or can be assigned, or an argument or result type of a higher-order function taking or returning a function. A function type depends on the type of the parameters and the result type of the function (it, or more accurately the unapplied type constructor · → ·, is a higher-kinded type).
Type constructorIn the area of mathematical logic and computer science known as type theory, a type constructor is a feature of a typed formal language that builds new types from old ones. Basic types are considered to be built using nullary type constructors. Some type constructors take another type as an argument, e.g., the constructors for product types, function types, power types and list types. New types can be defined by recursively composing type constructors.
Higher-order logicIn mathematics and logic, a higher-order logic (abbreviated HOL) is a form of predicate logic that is distinguished from first-order logic by additional quantifiers and, sometimes, stronger semantics. Higher-order logics with their standard semantics are more expressive, but their model-theoretic properties are less well-behaved than those of first-order logic. The term "higher-order logic" is commonly used to mean higher-order simple predicate logic.
Fixed-point combinatorIn mathematics and computer science in general, a fixed point of a function is a value that is mapped to itself by the function. In combinatory logic for computer science, a fixed-point combinator (or fixpoint combinator) is a higher-order function that returns some fixed point of its argument function, if one exists. Formally, if the function f has one or more fixed points, then and hence, by repeated application, In the classical untyped lambda calculus, every function has a fixed point.