Electrodialysis (ED) is used to transport salt ions from one solution through ion-exchange membranes to another solution under the influence of an applied electric potential difference. This is done in a configuration called an electrodialysis cell. The cell consists of a feed (dilute) compartment and a concentrate (brine) compartment formed by an anion exchange membrane and a cation exchange membrane placed between two electrodes. In almost all practical electrodialysis processes, multiple electrodialysis cells are arranged into a configuration called an electrodialysis stack, with alternating anion and cation-exchange membranes forming the multiple electrodialysis cells. Electrodialysis processes are different from distillation techniques and other membrane based processes (such as reverse osmosis (RO)) in that dissolved species are moved away from the feed stream, whereas other processes move away the water from the remaining substances. Because the quantity of dissolved species in the feed stream is far less than that of the fluid, electrodialysis offers the practical advantage of much higher feed recovery in many applications.
In an electrodialysis stack, the dilute (D) feed stream, brine or concentrate (C) stream, and electrode (E) stream are allowed to flow through the appropriate cell compartments formed by the ion-exchange membranes. Under the influence of an electrical potential difference, the negatively charged ions (e.g., chloride) in the dilute stream migrate toward the positively charged anode. These ions pass through the positively charged anion-exchange membrane, but are prevented from further migration toward the anode by the negatively charged cation-exchange membrane and therefore stay in the C stream, which becomes concentrated with the anions. The positively charged species (e.g., sodium) in the D stream migrate toward the negatively charged cathode and pass through the negatively charged cation-exchange membrane. These cations also stay in the C stream, prevented from further migration toward the cathode by the positively charged anion-exchange membrane.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Reverse osmosis (RO) is a water purification process that uses a semi-permeable membrane to separate water molecules from other substances. RO applies pressure to overcome osmotic pressure that favors even distributions. RO can remove dissolved or suspended chemical species as well as biological substances (principally bacteria), and is used in industrial processes and the production of potable water. RO retains the solute on the pressurized side of the membrane and the purified solvent passes to the other side.
Water softening is the removal of calcium, magnesium, and certain other metal cations in hard water. The resulting soft water requires less soap for the same cleaning effort, as soap is not wasted bonding with calcium ions. Soft water also extends the lifetime of plumbing by reducing or eliminating scale build-up in pipes and fittings. Water softening is usually achieved using lime softening or ion-exchange resins but is increasingly being accomplished using nanofiltration or reverse osmosis membranes.
Purified water is water that has been mechanically filtered or processed to remove impurities and make it suitable for use. Distilled water was, formerly, the most common form of purified water, but, in recent years, water is more frequently purified by other processes including capacitive deionization, reverse osmosis, carbon filtering, microfiltration, ultrafiltration, ultraviolet oxidation, or electrodeionization.
Modifying the properties of bio-based materials has garnered increasing interest in recent years. In related applications, the ability of alginates to complex with metal ions has been shown to be effective in liquid-to-gel transitions, useful in the develo ...
Lead halide perovskites with mixtures of monovalent cations have attracted wide attention due to the possibility of preferentially stabilizing the perovskite phase with respect to photovoltaically less suitable competing phases. Here, we present a theoreti ...
ROYAL SOC CHEMISTRY2020
, ,
Polyelectrolyte brushes are responsive to salt in the environment, and this has found broad applications in antifouling, biolubrication, and drug delivery. Salt primarily influences the conformation of the polyelectrolytes through ion adsorption. While ion ...