Cyclic moduleIn mathematics, more specifically in ring theory, a cyclic module or monogenous module is a module over a ring that is generated by one element. The concept is a generalization of the notion of a cyclic group, that is, an Abelian group (i.e. Z-module) that is generated by one element. A left R-module M is called cyclic if M can be generated by a single element i.e. M = (x) = Rx = {rx r ∈ R} for some x in M. Similarly, a right R-module N is cyclic if N = yR for some y ∈ N. 2Z as a Z-module is a cyclic module.
Primitive part and contentIn algebra, the content of a nonzero polynomial with integer coefficients (or, more generally, with coefficients in a unique factorization domain) is the greatest common divisor of its coefficients. The primitive part of such a polynomial is the quotient of the polynomial by its content. Thus a polynomial is the product of its primitive part and its content, and this factorization is unique up to the multiplication of the content by a unit of the ring of the coefficients (and the multiplication of the primitive part by the inverse of the unit).
Ideal quotientIn abstract algebra, if I and J are ideals of a commutative ring R, their ideal quotient (I : J) is the set Then (I : J) is itself an ideal in R. The ideal quotient is viewed as a quotient because if and only if . The ideal quotient is useful for calculating primary decompositions. It also arises in the description of the set difference in algebraic geometry (see below). (I : J) is sometimes referred to as a colon ideal because of the notation. In the context of fractional ideals, there is a related notion of the inverse of a fractional ideal.
ResultantIn mathematics, the resultant of two polynomials is a polynomial expression of their coefficients that is equal to zero if and only if the polynomials have a common root (possibly in a field extension), or, equivalently, a common factor (over their field of coefficients). In some older texts, the resultant is also called the eliminant. The resultant is widely used in number theory, either directly or through the discriminant, which is essentially the resultant of a polynomial and its derivative.
Finitely generated algebraIn mathematics, a finitely generated algebra (also called an algebra of finite type) is a commutative associative algebra A over a field K where there exists a finite set of elements a1,...,an of A such that every element of A can be expressed as a polynomial in a1,...,an, with coefficients in K. Equivalently, there exist elements s.t. the evaluation homomorphism at is surjective; thus, by applying the first isomorphism theorem, . Conversely, for any ideal is a -algebra of finite type, indeed any element of is a polynomial in the cosets with coefficients in .