Principal branchIn mathematics, a principal branch is a function which selects one branch ("slice") of a multi-valued function. Most often, this applies to functions defined on the complex plane. Principal branches are used in the definition of many inverse trigonometric functions, such as the selection either to define that or that A more familiar principal branch function, limited to real numbers, is that of a positive real number raised to the power of 1/2. For example, take the relation y = x1/2, where x is any positive real number.
Madhava seriesIn mathematics, a Madhava series is one of the three Taylor series expansions for the sine, cosine, and arctangent functions discovered in 14th or 15th century Kerala by the mathematician and astronomer Madhava of Sangamagrama (c. 1350 – c. 1425) or his followers in the Kerala school of astronomy and mathematics. Using modern notation, these series are: All three series were later independently discovered in 17th century Europe.
Tangent half-angle formulaIn trigonometry, tangent half-angle formulas relate the tangent of half of an angle to trigonometric functions of the entire angle. The tangent of half an angle is the stereographic projection of the circle onto a line. Among these formulas are the following: From these one can derive identities expressing the sine, cosine, and tangent as functions of tangents of half-angles: Using double-angle formulae and the Pythagorean identity gives Taking the quotient of the formulae for sine and cosine yields Combining the Pythagorean identity with the double-angle formula for the cosine, rearranging, and taking the square roots yields and which, upon division gives Alternatively, It turns out that the absolute value signs in these last two formulas may be dropped, regardless of which quadrant α is in.
Binomial seriesIn mathematics, the binomial series is a generalization of the polynomial that comes from a binomial formula expression like for a nonnegative integer . Specifically, the binomial series is the Taylor series for the function centered at , where and . Explicitly, where the power series on the right-hand side of () is expressed in terms of the (generalized) binomial coefficients If α is a nonnegative integer n, then the (n + 2)th term and all later terms in the series are 0, since each contains a factor (n − n); thus in this case the series is finite and gives the algebraic binomial formula.
ExsecantThe exsecant (exsec, exs) and excosecant (excosec, excsc, exc) are trigonometric functions defined in terms of the secant and cosecant functions. They used to be important in fields such as surveying, railway engineering, civil engineering, astronomy, and spherical trigonometry and could help improve accuracy, but are rarely used today except to simplify some calculations.
Machin-like formulaIn mathematics, Machin-like formulae are a popular technique for computing pi (the ratio of the circumference to the diameter of a circle) to a large number of digits. They are generalizations of John Machin's formula from 1706: which he used to compute pi to 100 decimal places. Machin-like formulas have the form where is a positive integer, are signed non-zero integers, and and are positive integers such that .