Garnets (pronˈɡɑrnᵻt) are a group of silicate minerals that have been used since the Bronze Age as gemstones and abrasives.
All species of garnets possess similar physical properties and crystal forms, but differ in chemical composition. The different species are pyrope, almandine, spessartine, grossular (varieties of which are hessonite or cinnamon-stone and tsavorite), uvarovite and andradite. The garnets make up two solid solution series: pyrope-almandine-spessartine (pyralspite), with the composition range ; and uvarovite-grossular-andradite (ugrandite), with the composition range .
The word garnet comes from the 14th-century Middle English word gernet, meaning 'dark red'. It is borrowed from Old French grenate from Latin granatus, from granum ('grain, seed'). This is possibly a reference to mela granatum or even pomum granatum ('pomegranate', Punica granatum), a plant whose fruits contain abundant and vivid red seed covers (arils), which are similar in shape, size, and color to some garnet crystals. Hessonite garnet is also named 'gomed' in Indian literature and is one of the 9 jewels in Vedic astrology that compose the Navaratna.
Garnet species are found in every colour, with reddish shades most common. Blue garnets are the rarest and were first reported in the 1990s.
Garnet species' light transmission properties can range from the gemstone-quality transparent specimens to the opaque varieties used for industrial purposes as abrasives. The mineral's lustre is categorized as vitreous (glass-like) or resinous (amber-like).
Garnets are nesosilicates having the general formula X3Y2(SiO4)3. The X site is usually occupied by divalent cations (Ca, Mg, Fe, Mn)2+ and the Y site by trivalent cations (Al3+, Fe3+, Cr3+) in an octahedral/tetrahedral framework with [SiO4]4− occupying the tetrahedra. Garnets are most often found in the dodecahedral crystal habit, but are also commonly found in the trapezohedron habit as well as the hexoctahedral habit.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Silicate minerals are rock-forming minerals made up of silicate groups. They are the largest and most important class of minerals and make up approximately 90 percent of Earth's crust. In mineralogy, silica (silicon dioxide, ) is usually considered a silicate mineral. Silica is found in nature as the mineral quartz, and its polymorphs. On Earth, a wide variety of silicate minerals occur in an even wider range of combinations as a result of the processes that have been forming and re-working the crust for billions of years.
Metamorphic rocks arise from the transformation of existing rock to new types of rock in a process called metamorphism. The original rock (protolith) is subjected to temperatures greater than and, often, elevated pressure of or more, causing profound physical or chemical changes. During this process, the rock remains mostly in the solid state, but gradually recrystallizes to a new texture or mineral composition. The protolith may be an igneous, sedimentary, or existing metamorphic rock.
Talc, or talcum, is a clay mineral, composed of hydrated magnesium silicate with the chemical formula Mg3Si4O10(OH)2. Talc in powdered form, often combined with corn starch, is used as baby powder. This mineral is used as a thickening agent and lubricant. It is an ingredient in ceramics, paints, and roofing material. It is a main ingredient in many cosmetics. It occurs as foliated to fibrous masses, and in an exceptionally rare crystal form. It has a perfect basal cleavage and an uneven flat fracture, and it is foliated with a two-dimensional platy form.
Explores laser micro-processing of materials, fluorescence, spectroscopy, and band structures.
Explores magnetization dynamics, spin waves in thin films, GHz spectroscopy, and future magnetic technologies.
Explores metals processing through blast furnace and steelmaking, covering reduction of metal oxides, blast furnace operation, and oxygen converter process.
Knowledge of oxygen diffusion in garnet is crucial for a correct interpretation of oxygen isotope signatures in natural samples. A series of experiments was undertaken to determine the diffusivity of oxygen in garnet, which remains poorly constrained. The ...
The synthesis of molecular-sieving two-dimensional zeolitic membranes by the assembly of crystalline building blocks without resorting to the secondary growth process is highly desirable. The precise pore size for molecular sieving, ultrathin thickness, an ...
Two-dimensional (2D) hexagonal lattices of Cu disks are shown to induce orientation-dependent magnonic crystal (MC) modes for propagating forward volume spin waves in a single-crystal yttrium iron garnet (YIG) film. The width and depth of the magnonic band ...