An anti-tank guided missile (ATGM), anti-tank missile, anti-tank guided weapon (ATGW) or anti-armor guided weapon is a guided missile primarily designed to hit and destroy heavily armored military vehicles. ATGMs range in size from shoulder-launched weapons, which can be transported by a single soldier, to larger tripod-mounted weapons, which require a squad or team to transport and fire, to vehicle and aircraft mounted missile systems.
Earlier man-portable anti-tank weapons, like anti-tank rifles and magnetic anti-tank mines, generally had very short range, sometimes on the order of metres or tens of metres. Rocket-propelled high-explosive anti-tank (HEAT) systems appeared in World War II and extended range to the order of hundreds of metres, but accuracy was low and hitting targets at these ranges was largely a matter of luck. It was the combination of rocket propulsion and remote wire guidance that made the ATGM much more effective than these earlier weapons, and gave light infantry real capability on the battlefield against post-war tank designs. The introduction of semi-automatic guidance in the 1960s further improved the performance of ATGMs.
As of 2016, ATGMs were used by over 130 countries and many non-state actors around the world. Post-Cold-War main battle tanks (MBTs) using composite and reactive armors have proven to be resistant to smaller ATGMs.
Germany developed a design for a wire-guided anti tank missile derived from the Ruhrstahl X-4 air to air missile concept in the closing years of World War II. Known as the X-7, it was probably never used in combat and allegedly had serious guidance to target issues. It never entered service, though a few were produced.
First-generation ATGMs use a type of command guidance termed manual command to line of sight (MCLOS). This requires continuous input from an operator using a joystick or similar control system to steer the missile to a target. One disadvantage of this is that an operator must keep the sight's reticle cross hairs on a target and then steer the missile into the cross hairs, i.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ce cours présente la thermodynamique en tant que théorie permettant une description d'un grand nombre de phénomènes importants en physique, chimie et ingéniere, et d'effets de transport. Une introduc
A main battle tank (MBT), also known as a battle tank or universal tank, is a tank that fills the role of armor-protected direct fire and maneuver in many modern armies. Cold War-era development of more powerful engines, better suspension systems and lighter composite armor allowed for the design of a tank that had the firepower of a super-heavy tank, the armor protection of a heavy tank, and the mobility of a light tank, in a package with the weight of a medium tank.
Anti-tank warfare originated from the need to develop technology and tactics to destroy tanks during World War I. Since the Allies deployed the first tanks in 1916, the German Empire developed the first anti-tank weapons. The first developed anti-tank weapon was a scaled-up bolt-action rifle, the Mauser 1918 T-Gewehr, that fired a 13.2 mm cartridge with a solid bullet that could penetrate the thin armor of tanks of the time and destroy the engine or ricochet inside, killing occupants.
A thermobaric weapon, also called an aerosol bomb, or a vacuum bomb, is a type of explosive that uses oxygen from the surrounding air to generate a high-temperature explosion. The fuel–air explosive is one of the best-known types of thermobaric weapons. Thermobaric weapons are almost 100% fuel and as a result are significantly more energetic than conventional explosives of equal weight. The fuel is often elemental. Many types of thermobaric weapons can be fitted to hand-held launchers, and can also be launched from airplanes.
Explains temperature regulation in tank systems through control loop elements and process control.
Explores the equilibrium between subsystems, heat, work, and energy in thermodynamics.
Explores the physical sense of potentials, equilibrium between subsystems, and work and free energy in systems.
Magnetic manipulation of objects within the body is a growing field of research since the second half of the last century. Therapeutic and diagnostic capabilities offered by such technology are extended with the clinical need to make procedures less invasi ...
The Sloan Digital Sky Survey V (SDSS-V) is an all-sky spectroscopic survey of more than 6 million objects, designed to decode the history of the Milky Way, reveal the inner workings of stars, investigate the origin of solar systems, and track the growth of ...
SPIE-INT SOC OPTICAL ENGINEERING2020
,
Image-guided systems have recently been introduced for their application in liver surgery. We aimed to identify and propose suitable indications for image-guided navigation systems in the domain of open oncologic liver surgery and, more specifically, in th ...