In geometry, the neusis (νεῦσις; ; plural: neuseis) is a geometric construction method that was used in antiquity by Greek mathematicians.
The neusis construction consists of fitting a line element of given length (a) in between two given lines (l and m), in such a way that the line element, or its extension, passes through a given point P. That is, one end of the line element has to lie on l, the other end on m, while the line element is "inclined" towards P.
Point P is called the pole of the neusis, line l the directrix, or guiding line, and line m the catch line. Length a is called the diastema (διάστημα).
A neusis construction might be performed by means of a marked ruler that is rotatable around the point P (this may be done by putting a pin into the point P and then pressing the ruler against the pin). In the figure one end of the ruler is marked with a yellow eye with crosshairs: this is the origin of the scale division on the ruler. A second marking on the ruler (the blue eye) indicates the distance a from the origin. The yellow eye is moved along line l, until the blue eye coincides with line m. The position of the line element thus found is shown in the figure as a dark blue bar.
Neuseis have been important because they sometimes provide a means to solve geometric problems that are not solvable by means of compass and straightedge alone. Examples are the trisection of any angle in three equal parts, and the doubling of the cube. Mathematicians such as Archimedes of Syracuse (287–212 BC) and Pappus of Alexandria (290–350 AD) freely used neuseis; Sir Isaac Newton (1642–1726) followed their line of thought, and also used neusis constructions. Nevertheless, gradually the technique dropped out of use.
In 2002, A. Baragar showed that every point constructible with marked ruler and compass lies in a tower of fields over , , such that the degree of the extension at each step is no higher than 6. Of all prime-power polygons below the 100-gon, this is enough to show that the regular 23-, 29-, 43-, 47-, 49-, 53-, 59-, 67-, 71-, 79-, 83-, and 89-gons cannot be constructed with neusis.