Concept

Neusis

Résumé
La neusis (du grec ancien νεῦσις venant de νεύειν neuein « pencher vers »; pluriel : νεύσεις neuseis) est une méthode de construction géométrique utilisée dans l'Antiquité par les mathématiciens grecs dans des cas où les constructions à la règle et au compas étaient impossibles. La construction par neusis consiste à placer un segment de longueur fixée a entre deux courbes données l et m, de telle sorte que la droite support du segment passe par un point fixé P. Ces constructions peuvent se faire à l’aide d’une règle graduée, dite règle à neusis : on la fait glisser et pivoter en restant au contact d'un axe fixé en P ; l'origine de la graduation sur la règle (marquée en jaune sur la figure) glisse sur la courbe l jusqu'à ce que la graduation à distance a (marquée en bleu) soit sur la courbe m. P est le pôle dela neusis, l est la directrice, ou courbe guide, et m est la courbe cible. La longueur a s'appelle le diastème (διάστημα; grec ancien pour « distance »). Cette construction est d'importance historique parce qu'elle permet des constructions géométriques impossibles avec seulement une règle (non graduée) et un compas. En particulier, elle permet de trisecter n'importe quel angle, de dupliquer le cube, et de construire des polygones réguliers à 7, 9 ou 13 côtés. Archimède (287–212 BC) et Pappus (290-350 AD) l'utilisaient fréquemment ; Isaac Newton (1642-1726) appliqua également leurs méthodes. Cependant, cette technique disparut ensuite progressivement. On sait qu'un polygone régulier à n côtés est constructible par neusis si n = 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 26, 27, 28, 30, 32, 33, 34, 35, 36, 37, 38, 39, 40, 42, 44, 45, 48, 51, 52, 54, 55, 56, 57, 60, 63, 64, 65, 66, 68, 70, 72, 73, 74, 76, 77, 78, 80, 81, 84, 85, 88, 90, 91, 95, 96, 97, 99, 102, 104, 105, 108, 109, 110, 111, 112, 114, 117, 119, 120, 126, 128, ... (, modifiée en 2014 après la découverte par Benjamin et Snyder d'une construction par neusis de l'hendécagone régulier).
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.