Pappus of AlexandriaPappus of Alexandria (ˈpæpəs; Πάππος ὁ Ἀλεξανδρεύς; 290- 350 AD) was one of the last great Greek mathematicians of antiquity; he is known for his Synagoge (Συναγωγή) or Collection ( 340), and for Pappus's hexagon theorem in projective geometry. Nothing is known of his life, other than what can be found in his own writings: that he had a son named Hermodorus, and was a teacher in Alexandria. Collection, his best-known work, is a compendium of mathematics in eight volumes, the bulk of which survives.
Constructible numberIn geometry and algebra, a real number is constructible if and only if, given a line segment of unit length, a line segment of length can be constructed with compass and straightedge in a finite number of steps. Equivalently, is constructible if and only if there is a closed-form expression for using only integers and the operations for addition, subtraction, multiplication, division, and square roots. The geometric definition of constructible numbers motivates a corresponding definition of constructible points, which can again be described either geometrically or algebraically.
DecagonIn geometry, a decagon (from the Greek δέκα déka and γωνία gonía, "ten angles") is a ten-sided polygon or 10-gon. The total sum of the interior angles of a simple decagon is 1440°. A regular decagon has all sides of equal length and each internal angle will always be equal to 144°. Its Schläfli symbol is {10} and can also be constructed as a truncated pentagon, t{5}, a quasiregular decagon alternating two types of edges. The picture shows a regular decagon with side length and radius of the circumscribed circle.