PentadecagonIn geometry, a pentadecagon or pentakaidecagon or 15-gon is a fifteen-sided polygon. A regular pentadecagon is represented by Schläfli symbol {15}. A regular pentadecagon has interior angles of 156°, and with a side length a, has an area given by As 15 = 3 × 5, a product of distinct Fermat primes, a regular pentadecagon is constructible using compass and straightedge: The following constructions of regular pentadecagons with given circumcircle are similar to the illustration of the proposition XVI in Book IV of Euclid's Elements.
Tomahawk (geometry)The tomahawk is a tool in geometry for angle trisection, the problem of splitting an angle into three equal parts. The boundaries of its shape include a semicircle and two line segments, arranged in a way that resembles a tomahawk, a Native American axe. The same tool has also been called the shoemaker's knife, but that name is more commonly used in geometry to refer to a different shape, the arbelos (a curvilinear triangle bounded by three mutually tangent semicircles).
Mathematics of paper foldingThe discipline of origami or paper folding has received a considerable amount of mathematical study. Fields of interest include a given paper model's flat-foldability (whether the model can be flattened without damaging it), and the use of paper folds to solve up-to cubic mathematical equations. Computational origami is a recent branch of computer science that is concerned with studying algorithms that solve paper-folding problems.
QuadratrixIn geometry, a quadratrix () is a curve having ordinates which are a measure of the area (or quadrature) of another curve. The two most famous curves of this class are those of Dinostratus and E. W. Tschirnhaus, which are both related to the circle. Quadratrix of Hippias The quadratrix of Dinostratus (also called the quadratrix of Hippias) was well known to the ancient Greek geometers, and is mentioned by Proclus, who ascribes the invention of the curve to a contemporary of Socrates, probably Hippias of Elis.
Constructible polygonIn mathematics, a constructible polygon is a regular polygon that can be constructed with compass and straightedge. For example, a regular pentagon is constructible with compass and straightedge while a regular heptagon is not. There are infinitely many constructible polygons, but only 31 with an odd number of sides are known. Some regular polygons are easy to construct with compass and straightedge; others are not.
IcositrigonIn geometry, an icositrigon (or icosikaitrigon) or 23-gon is a 23-sided polygon. The icositrigon has the distinction of being the smallest regular polygon that is not neusis constructible. A regular icositrigon is represented by Schläfli symbol {23}. A regular icositrigon has internal angles of degrees, with an area of where is side length and is the inradius, or apothem. The regular icositrigon is not constructible with a compass and straightedge or angle trisection, on account of the number 23 being neither a Fermat nor Pierpont prime.
TetradecagonIn geometry, a tetradecagon or tetrakaidecagon or 14-gon is a fourteen-sided polygon. A regular tetradecagon has Schläfli symbol {14} and can be constructed as a quasiregular truncated heptagon, t{7}, which alternates two types of edges. The area of a regular tetradecagon of side length a is given by As 14 = 2 × 7, a regular tetradecagon cannot be constructed using a compass and straightedge. However, it is constructible using neusis with use of the angle trisector, or with a marked ruler, as shown in the following two examples.
HendecagonIn geometry, a hendecagon (also undecagon or endecagon) or 11-gon is an eleven-sided polygon. (The name hendecagon, from Greek hendeka "eleven" and –gon "corner", is often preferred to the hybrid undecagon, whose first part is formed from Latin undecim "eleven".) A regular hendecagon is represented by Schläfli symbol {11}. A regular hendecagon has internal angles of 147.27 degrees (=147 degrees). The area of a regular hendecagon with side length a is given by As 11 is not a Fermat prime, the regular hendecagon is not constructible with compass and straightedge.
TridecagonIn geometry, a tridecagon or triskaidecagon or 13-gon is a thirteen-sided polygon. A regular tridecagon is represented by Schläfli symbol {13}. The measure of each internal angle of a regular tridecagon is approximately 152.308 degrees, and the area with side length a is given by As 13 is a Pierpont prime but not a Fermat prime, the regular tridecagon cannot be constructed using a compass and straightedge. However, it is constructible using neusis, or an angle trisector.
OctadecagonIn geometry, an octadecagon (or octakaidecagon) or 18-gon is an eighteen-sided polygon. A regular octadecagon has a Schläfli symbol {18} and can be constructed as a quasiregular truncated enneagon, t{9}, which alternates two types of edges. As 18 = 2 × 32, a regular octadecagon cannot be constructed using a compass and straightedge. However, it is constructible using neusis, or an angle trisection with a tomahawk. The following approximate construction is very similar to that of the enneagon, as an octadecagon can be constructed as a truncated enneagon.