PentadécagoneEn géométrie, un pentadécagone est un polygone à 15 sommets, donc 15 côtés et 90 diagonales. La somme des 15 angles internes d'un pentadécagone non croisé vaut . vignette|Un pentadécagone régulier et ses angles remarquables. Comme on sait construire le triangle équilatéral et le pentagone régulier, on applique le théorème de Gauss : 3 et 5 étant premiers entre eux, en multipliant par la relation de Bézout 2 × 3 – 5 = 1, on obtient l'égalité : Sur un cercle, à partir d'un point A, on place un point G tel que ; le point B tel que est le deuxième sommet du polygone régulier de côté AB.
Tomahawk (geometry)The tomahawk is a tool in geometry for angle trisection, the problem of splitting an angle into three equal parts. The boundaries of its shape include a semicircle and two line segments, arranged in a way that resembles a tomahawk, a Native American axe. The same tool has also been called the shoemaker's knife, but that name is more commonly used in geometry to refer to a different shape, the arbelos (a curvilinear triangle bounded by three mutually tangent semicircles).
Mathématiques des origamisLes pliages d'origamis sont utilisés en mathématiques pour procéder à des constructions géométriques. Selon les méthodes de pliages utilisées, on obtient des procédés plus riches que ceux propres à la règle et au compas. Le formalisme auquel il est le plus souvent fait référence est celui de Huzita. Il contient 6 axiomes qui sont en fait les 6 pliages de base permettant de décomposer n'importe quel origami. En voici la liste : Huzita axiom 1.png |'''Axiome 1.''' Un unique pli passe par deux points p_1 et p_2 spécifiés.
QuadratrixIn geometry, a quadratrix () is a curve having ordinates which are a measure of the area (or quadrature) of another curve. The two most famous curves of this class are those of Dinostratus and E. W. Tschirnhaus, which are both related to the circle. Quadratrix of Hippias The quadratrix of Dinostratus (also called the quadratrix of Hippias) was well known to the ancient Greek geometers, and is mentioned by Proclus, who ascribes the invention of the curve to a contemporary of Socrates, probably Hippias of Elis.
Constructible polygonIn mathematics, a constructible polygon is a regular polygon that can be constructed with compass and straightedge. For example, a regular pentagon is constructible with compass and straightedge while a regular heptagon is not. There are infinitely many constructible polygons, but only 31 with an odd number of sides are known. Some regular polygons are easy to construct with compass and straightedge; others are not.
IcositrigonIn geometry, an icositrigon (or icosikaitrigon) or 23-gon is a 23-sided polygon. The icositrigon has the distinction of being the smallest regular polygon that is not neusis constructible. A regular icositrigon is represented by Schläfli symbol {23}. A regular icositrigon has internal angles of degrees, with an area of where is side length and is the inradius, or apothem. The regular icositrigon is not constructible with a compass and straightedge or angle trisection, on account of the number 23 being neither a Fermat nor Pierpont prime.
TétradécagoneUn tétradécagone ou tétrakaidécagone ou quadridécagone est un polygone à 14 sommets, donc 14 côtés et 77 diagonales. La somme des angles internes de tout tétradécagone non croisé vaut . Un tétradécagone régulier est un tétradécagone dont les 14 côtés ont la même longueur et dont les 14 angles internes ont même mesure. Il y en a trois : deux étoilés (les tétradécagrammes notés {14/3} et {14/5}) et un convexe (noté {14}). C'est de ce dernier qu'il s'agit lorsqu'on dit « le tétradécagone régulier ».
HendécagoneUn hendécagone ou undécagone est un polygone à 11 sommets, donc 11 côtés et 44 diagonales. La somme des angles internes d'un hendécagone non croisé est égale à °. Un hendécagone régulier est un hendécagone dont les onze côtés ont la même longueur et dont les angles internes ont même mesure. Il y en a cinq : quatre étoilés (les hendécagrammes notés {11/2}, {11/3}, {11/4} et {11/5}) et un convexe (noté {11}). C'est de ce dernier qu'il s'agit lorsqu'on dit « l'hendécagone régulier ». Regular_star_polygon_11-2.
TridécagoneEn géométrie, un tridécagone est un polygone à 13 sommets, donc 13 côtés et 65 diagonales. La somme des angles internes d'un tridécagone non croisé est égale à °. Un tridécagone régulier est un tridécagone dont les treize côtés ont la même longueur et dont les angles internes ont même mesure. Il y en a six : cinq étoilés (les tridécagrammes notés {13/2}, {13/3}, {13/4}, {13/5} et {13/6}) et un convexe (noté {13}). C'est de ce dernier qu'il s'agit lorsqu'on dit « le tridécagone régulier ». Regular polygon 13 annotated.
OctadécagoneUn octadécagone ou octakaidécagone est un polygone à 18 sommets, donc 18 côtés et 135 diagonales. La somme des angles internes d'un octadécagone non croisé vaut . Le nom du polygone est formé à partir des préfixes octo et déca. Octo provient du grec ancien ὀκτώ (octo, huit) et déca de δέκα (déca, dix). En grec ancien, dix-huit se dit ὀκτὼ καὶ δέκα (octo kai deka). Un octadécagone régulier est un octadécagone dont les 18 côtés ont la même longueur et dont les angles internes ont même mesure.