Lucky imagingLucky imaging (also called lucky exposures) is one form of speckle imaging used for astrophotography. Speckle imaging techniques use a high-speed camera with exposure times short enough (100 ms or less) so that the changes in the Earth's atmosphere during the exposure are minimal. With lucky imaging, those optimum exposures least affected by the atmosphere (typically around 10%) are chosen and combined into a single image by shifting and adding the short exposures, yielding much higher angular resolution than would be possible with a single, longer exposure, which includes all the frames.
Adaptive opticsAdaptive optics (AO) is a technique of precisely deforming a mirror in order to compensate for light distortion. It is used in astronomical telescopes and laser communication systems to remove the effects of atmospheric distortion, in microscopy, optical fabrication and in retinal imaging systems to reduce optical aberrations. Adaptive optics works by measuring the distortions in a wavefront and compensating for them with a device that corrects those errors such as a deformable mirror or a liquid crystal array.
Super-resolution imagingSuper-resolution imaging (SR) is a class of techniques that enhance (increase) the of an imaging system. In optical SR the diffraction limit of systems is transcended, while in geometrical SR the resolution of digital is enhanced. In some radar and sonar imaging applications (e.g. magnetic resonance imaging (MRI), high-resolution computed tomography), subspace decomposition-based methods (e.g. MUSIC) and compressed sensing-based algorithms (e.g., SAMV) are employed to achieve SR over standard periodogram algorithm.
Plasmonic metamaterialA plasmonic metamaterial is a metamaterial that uses surface plasmons to achieve optical properties not seen in nature. Plasmons are produced from the interaction of light with metal-dielectric materials. Under specific conditions, the incident light couples with the surface plasmons to create self-sustaining, propagating electromagnetic waves known as surface plasmon polaritons (SPPs). Once launched, the SPPs ripple along the metal-dielectric interface. Compared with the incident light, the SPPs can be much shorter in wavelength.