SpallationSpallation is a process in which fragments of material (spall) are ejected from a body due to impact or stress. In the context of impact mechanics it describes ejection of material from a target during impact by a projectile. In planetary physics, spallation describes meteoritic impacts on a planetary surface and the effects of stellar winds and cosmic rays on planetary atmospheres and surfaces. In the context of mining or geology, spallation can refer to pieces of rock breaking off a rock face due to the internal stresses in the rock; it commonly occurs on mine shaft walls.
Uranium-234Uranium-234 (234U or U-234) is an isotope of uranium. In natural uranium and in uranium ore, 234U occurs as an indirect decay product of uranium-238, but it makes up only 0.0055% (55 parts per million) of the raw uranium because its half-life of just 245,500 years is only about 1/18,000 as long as that of 238U. Thus the ratio of 234U to 238U in a natural sample is equivalent to the ratio of their half-lives. The primary path of production of 234U via nuclear decay is as follows: uranium-238 nuclei emit an alpha particle to become thorium-234.
SuperphénixSuperphénix (Superphoenix) or SPX was a nuclear power station prototype on the Rhône river at Creys-Malville in France, close to the border with Switzerland. Superphénix was a 1,242 MWe fast breeder reactor with the twin goals of reprocessing nuclear fuel from France's line of conventional nuclear reactors, while also being an economical generator of power on its own. Construction began in 1976, the reactor went critical in 1985 and was connected to the grid in 1986. The project suffered cost overruns, delays and enormous public protests.
Graphite-moderated reactor"Graphite reactor" directs here. For the graphite reactor at Oak Ridge National Laboratory, see X-10 Graphite Reactor. A graphite-moderated reactor is a nuclear reactor that uses carbon as a neutron moderator, which allows natural uranium to be used as nuclear fuel. The first artificial nuclear reactor, the Chicago Pile-1, used nuclear graphite as a moderator.
Even and odd atomic nucleiIn nuclear physics, properties of a nucleus depend on evenness or oddness of its atomic number (proton number) Z, neutron number N and, consequently, of their sum, the mass number A. Most importantly, oddness of both Z and N tends to lower the nuclear binding energy, making odd nuclei generally less stable. This effect is not only experimentally observed, but is included in the semi-empirical mass formula and explained by some other nuclear models, such as the nuclear shell model.
Neutron numberThe neutron number (symbol N) is the number of neutrons in a nuclide. Atomic number (proton number) plus neutron number equals mass number: Z + N = A. The difference between the neutron number and the atomic number is known as the neutron excess: D = N − Z = A − 2Z. Neutron number is not written explicitly in nuclide symbol notation, but can be inferred as it is the difference between the two left-hand numbers (atomic number and mass). Nuclides that have the same neutron number but different proton numbers are called isotones.
Energy amplifierIn nuclear physics, an energy amplifier is a novel type of nuclear power reactor, a subcritical reactor, in which an energetic particle beam is used to stimulate a reaction, which in turn releases enough energy to power the particle accelerator and leave an energy profit for power generation. The concept has more recently been referred to as an accelerator-driven system (ADS) or accelerator-driven sub-critical reactor. None have ever been built.