In topology and related areas of mathematics, a Stone space, also known as a profinite space or profinite set, is a compact totally disconnected Hausdorff space. Stone spaces are named after Marshall Harvey Stone who introduced and studied them in the 1930s in the course of his investigation of Boolean algebras, which culminated in his representation theorem for Boolean algebras.
The following conditions on the topological space are equivalent:
is a Stone space;
is homeomorphic to the projective limit (in the ) of an inverse system of finite discrete spaces;
is compact and totally separated;
is compact, T0 , and zero-dimensional (in the sense of the small inductive dimension);
is coherent and Hausdorff.
Important examples of Stone spaces include finite discrete spaces, the Cantor set and the space of -adic integers, where is any prime number. Generalizing these examples, any product of finite discrete spaces is a Stone space, and the topological space underlying any profinite group is a Stone space. The Stone–Čech compactification of the natural numbers with the discrete topology, or indeed of any discrete space, is a Stone space.
Stone's representation theorem for Boolean algebras
To every Boolean algebra we can associate a Stone space as follows: the elements of are the ultrafilters on and the topology on called , is generated by the sets of the form where
Stone's representation theorem for Boolean algebras states that every Boolean algebra is isomorphic to the Boolean algebra of clopen sets of the Stone space ; and furthermore, every Stone space is homeomorphic to the Stone space belonging to the Boolean algebra of clopen sets of These assignments are functorial, and we obtain a between the category of Boolean algebras (with homomorphisms as morphisms) and the category of Stone spaces (with continuous maps as morphisms).
Stone's theorem gave rise to a number of similar dualities, now collectively known as Stone dualities.
The category of Stone spaces with continuous maps is equivalent to the of the , which explains the term "profinite sets".
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In topology and related areas of mathematics, a topological property or topological invariant is a property of a topological space that is invariant under homeomorphisms. Alternatively, a topological property is a proper class of topological spaces which is closed under homeomorphisms. That is, a property of spaces is a topological property if whenever a space X possesses that property every space homeomorphic to X possesses that property. Informally, a topological property is a property of the space that can be expressed using open sets.
In mathematics, the inverse limit (also called the projective limit) is a construction that allows one to "glue together" several related objects, the precise gluing process being specified by morphisms between the objects. Thus, inverse limits can be defined in any although their existence depends on the category that is considered. They are a special case of the concept of in category theory. By working in the , that is by reverting the arrows, an inverse limit becomes a direct limit or inductive limit, and a limit becomes a colimit.
In topology and related branches of mathematics, a totally disconnected space is a topological space that has only singletons as connected subsets. In every topological space, the singletons (and, when it is considered connected, the empty set) are connected; in a totally disconnected space, these are the only connected subsets. An important example of a totally disconnected space is the Cantor set, which is homeomorphic to the set of p-adic integers. Another example, playing a key role in algebraic number theory, is the field Qp of p-adic numbers.
Algebraic K-theory, which to any ring R associates a sequence of groups, can be viewed as a theory of linear algebra over an arbitrary ring. We will study in detail the first two of these groups and a
The intersection graph of a collection C of sets is the graph on the vertex set C, in which C-1 . C-2 is an element of C are joined by an edge if and only if C-1 boolean AND C-2 not equal empty set. Erdos conjectured that the chromatic number of triangle-f ...