Concept

Johnson bound

Résumé
In applied mathematics, the Johnson bound (named after Selmer Martin Johnson) is a limit on the size of error-correcting codes, as used in coding theory for data transmission or communications. Let be a q-ary code of length , i.e. a subset of . Let be the minimum distance of , i.e. where is the Hamming distance between and . Let be the set of all q-ary codes with length and minimum distance and let denote the set of codes in such that every element has exactly nonzero entries. Denote by the number of elements in . Then, we define to be the largest size of a code with length and minimum distance : Similarly, we define to be the largest size of a code in : Theorem 1 (Johnson bound for ): If , If , Theorem 2 (Johnson bound for ): (i) If (ii) If , then define the variable as follows. If is even, then define through the relation ; if is odd, define through the relation . Let . Then, where is the floor function. Remark: Plugging the bound of Theorem 2 into the bound of Theorem 1 produces a numerical upper bound on .
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.