Summary
Tabu search (TS) is a metaheuristic search method employing local search methods used for mathematical optimization. It was created by Fred W. Glover in 1986 and formalized in 1989. Local (neighborhood) searches take a potential solution to a problem and check its immediate neighbors (that is, solutions that are similar except for very few minor details) in the hope of finding an improved solution. Local search methods have a tendency to become stuck in suboptimal regions or on plateaus where many solutions are equally fit. Tabu search enhances the performance of local search by relaxing its basic rule. First, at each step worsening moves can be accepted if no improving move is available (like when the search is stuck at a strict local minimum). In addition, prohibitions (hence the term tabu) are introduced to discourage the search from coming back to previously-visited solutions. The implementation of tabu search uses memory structures that describe the visited solutions or user-provided sets of rules. If a potential solution has been previously visited within a certain short-term period or if it has violated a rule, it is marked as "tabu" (forbidden) so that the algorithm does not consider that possibility repeatedly. The word tabu comes from the Tongan word to indicate things that cannot be touched because they are sacred. Tabu search is a metaheuristic algorithm that can be used for solving combinatorial optimization problems (problems where an optimal ordering and selection of options is desired). Current applications of TS span the areas of resource planning, telecommunications, VLSI design, financial analysis, scheduling, space planning, energy distribution, molecular engineering, logistics, pattern classification, flexible manufacturing, waste management, mineral exploration, biomedical analysis, environmental conservation and scores of others.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.