Summary
Reverse genetics is a method in molecular genetics that is used to help understand the function(s) of a gene by analysing the phenotypic effects caused by genetically engineering specific nucleic acid sequences within the gene. The process proceeds in the opposite direction to forward genetic screens of classical genetics. While forward genetics seeks to find the genetic basis of a phenotype or trait, reverse genetics seeks to find what phenotypes are controlled by particular genetic sequences. Automated DNA sequencing generates large volumes of genomic sequence data relatively rapidly. Many genetic sequences are discovered in advance of other, less easily obtained, biological information. Reverse genetics attempts to connect a given genetic sequence with specific effects on the organism. Reverse genetics systems can also allow the recovery and generation of infectious or defective viruses with desired mutations. This allows the ability to study the virus in vitro and in vivo. In order to learn the influence a sequence has on phenotype, or to discover its biological function, researchers can engineer a change or disrupt the DNA. After this change has been made a researcher can look for the effect of such alterations in the whole organism. There are several different methods of reverse genetics: Site-directed mutagenesis is a sophisticated technique that can either change regulatory regions in the promoter of a gene or make subtle codon changes in the open reading frame to identify important amino residues for protein function. Alternatively, the technique can be used to create null alleles so that the gene is not functional. For example, deletion of a gene by gene targeting (gene knockout) can be done in some organisms, such as yeast, mice and moss. Unique among plants, in Physcomitrella patens, gene knockout via homologous recombination to create knockout moss (see figure) is nearly as efficient as in yeast. In the case of the yeast model system directed deletions have been created in every non-essential gene in the yeast genome.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.