Gene knockouts (also known as gene deletion or gene inactivation) are a widely used genetic engineering technique that involves the targeted removal or inactivation of a specific gene within an organism's genome. This can be done through a variety of methods, including homologous recombination, CRISPR-Cas9, and TALENs. One of the main advantages of gene knockouts is that they allow researchers to study the function of a specific gene in vivo, and to understand the role of the gene in normal development and physiology as well as in the pathology of diseases. By studying the phenotype of the organism with the knocked out gene, researchers can gain insights into the biological processes that the gene is involved in. There are two main types of gene knockouts: complete and conditional. A complete gene knockout permanently inactivates the gene, while a conditional gene knockout allows for the gene to be turned off and on at specific times or in specific tissues. Conditional knockouts are particularly useful for studying developmental processes and for understanding the role of a gene in specific cell types or tissues. Gene knockouts have been widely used in many different organisms, including bacteria, yeast, fruit flies, zebrafish, and mice. In mice, gene knockouts are commonly used to study the function of specific genes in development, physiology, and cancer research. The use of gene knockouts in mouse models has been particularly valuable in the study of human diseases. For example, gene knockouts in mice have been used to study the role of specific genes in cancer, neurological disorders, immune disorders, and metabolic disorders. However, gene knockouts also have some limitations. For example, the loss of a single gene may not fully mimic the effects of a genetic disorder, and the knockouts may have unintended effects on other genes or pathways. Additionally, gene knockouts are not always a good model for human disease as the mouse genome is not identical to the human genome, and mouse physiology is different from human physiology.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (5)
BIOENG-320: Synthetic biology
This advanced Bachelor/Master level course will cover fundamentals and approaches at the interface of biology, chemistry, engineering and computer science for diverse fields of synthetic biology. This
BIOENG-110: General Biology
Le but du cours est de fournir un aperçu général de la biologie des cellules et des organismes. Nous en discuterons dans le contexte de la vie des cellules et des organismes, en mettant l'accent sur l
CH-412: Frontiers in chemical biology
Chemical biology is a key discipline in biomedical research for drug discovery, synthetic biology and protein functional annotation. We will give a broad perspective of the field ranging from seminal
Show more
Related lectures (31)
Genome Editing: CRISPR-Cas Applications
Explores the applications of CRISPR-Cas in genome editing, focusing on engineering bacterial genomes, curing genetic diseases, guide RNA simplicity, Cas9 specificity, DNA damage mechanisms, and base editing.
Identifying Drug Targets: Safety and Efficacy
Delves into identifying drug targets, ensuring efficacy, and maintaining safety in medical chemistry, covering genetic tests, chirality, stereochemistry, drug resistance, and drug-likeness rules.
Chemical Biology: High-Throughput and High-Content Screening
Covers Chemical Biology, high-throughput screening, RNA interference, CRISPR-Cas9, and organoid differentiation for drug discovery.
Show more
Related publications (184)

Achieving high hybridization density at DNA biosensor surfaces using branched spacer and click chemistry

Sandrine Gerber, Mounir Driss Mensi, Perrine Agnes Edith Robin, Alireza Kavand, Lucas Mayoraz

The COVID-19 pandemic has highlighted the necessity to develop fast, highly sensitive and selective virus detection methods. Surface-based DNA-biosensors are interesting candidates for this purpose. Functionalization of solid substrates with DNA must be pr ...
2023

Wide-scale identification of novel/eliminated genes responsible for evolutionary transformations

Daria Korotkova

BackgroundIt is generally accepted that most evolutionary transformations at the phenotype level are associated either with rearrangements of genomic regulatory elements, which control the activity of gene networks, or with changes in the amino acid conten ...
2023

Tailoring the Hybridization Density of DNA Biosensors through Tunable Surface Functionalization

Sandrine Gerber, Mounir Driss Mensi, Perrine Agnes Edith Robin, Pauline Skigin, Lucas Mayoraz

DNA biosensors are promising candidates for the development of point-of-care diagnosis methods. They can be inserted in microfluidic platforms, are often non-expensive, and can be produced for a variety of targeted analytes. However, their development face ...
2023
Show more
Related concepts (16)
Homologous recombination
Homologous recombination is a type of genetic recombination in which genetic information is exchanged between two similar or identical molecules of double-stranded or single-stranded nucleic acids (usually DNA as in cellular organisms but may be also RNA in viruses). Homologous recombination is widely used by cells to accurately repair harmful DNA breaks that occur on both strands of DNA, known as double-strand breaks (DSB), in a process called homologous recombinational repair (HRR).
DNA sequencing
DNA sequencing is the process of determining the nucleic acid sequence – the order of nucleotides in DNA. It includes any method or technology that is used to determine the order of the four bases: adenine, guanine, cytosine, and thymine. The advent of rapid DNA sequencing methods has greatly accelerated biological and medical research and discovery. Knowledge of DNA sequences has become indispensable for basic biological research, DNA Genographic Projects and in numerous applied fields such as medical diagnosis, biotechnology, forensic biology, virology and biological systematics.
CRISPR
CRISPR (ˈkrɪspər) (an acronym for clustered regularly interspaced short palindromic repeats) is a family of DNA sequences found in the genomes of prokaryotic organisms such as bacteria and archaea. These sequences are derived from DNA fragments of bacteriophages that had previously infected the prokaryote. They are used to detect and destroy DNA from similar bacteriophages during subsequent infections. Hence these sequences play a key role in the antiviral (i.e. anti-phage) defense system of prokaryotes and provide a form of acquired immunity.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.