In signal processing, noise is a general term for unwanted (and, in general, unknown) modifications that a signal may suffer during capture, storage, transmission, processing, or conversion. Sometimes the word is also used to mean signals that are random (unpredictable) and carry no useful information; even if they are not interfering with other signals or may have been introduced intentionally, as in comfort noise. Noise reduction, the recovery of the original signal from the noise-corrupted one, is a very common goal in the design of signal processing systems, especially filters. The mathematical limits for noise removal are set by information theory. Signal processing noise can be classified by its statistical properties (sometimes called the "color" of the noise) and by how it modifies the intended signal: Additive noise, gets added to the intended signal White noise Additive white Gaussian noise Black noise Gaussian noise Pink noise or flicker noise, with 1/f power spectrum Brownian noise, with 1/f2 power spectrum Contaminated Gaussian noise, whose PDF is a linear mixture of Gaussian PDFs Power-law noise Cauchy noise Multiplicative noise, multiplies or modulates the intended signal Quantization error, due to conversion from continuous to discrete values Poisson noise, typical of signals that are rates of discrete events Shot noise, e.g.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (18)
EE-594: Smart sensors for IoT
This lecture provides insights in the design and technologies of Internet-of-Things sensor nodes, with focus on low power technologies. The lectures alternate every two weeks between sensing technolog
COM-500: Statistical signal and data processing through applications
Building up on the basic concepts of sampling, filtering and Fourier transforms, we address stochastic modeling, spectral analysis, estimation and prediction, classification, and adaptive filtering, w
MSE-352: Introduction to microscopy + Laboratory work
Ce cours d'introduction à la microscopie a pour but de donner un apperçu des différentes techniques d'analyse de la microstructure et de la composition des matériaux, en particulier celles liées aux m
Show more
Related publications (32)

Hitting with Probability One for Stochastic Heat Equations with Additive Noise

Robert Dalang, Fei Pu

We study the hitting probabilities of the solution to a system of d stochastic heat equations with additive noise subject to Dirichlet boundary conditions. We show that for any bounded Borel set with positive (d-6)\documentclass[12pt]{minimal} \usepackage{ ...
Springer/Plenum Publishers2024

Live-cell imaging powered by computation

Suliana Manley, Florian Jug

The proliferation of microscopy methods for live-cell imaging offers many new possibilities for users but can also be challenging to navigate. The prevailing challenge in live-cell fluorescence microscopy is capturing intra-cellular dynamics while preservi ...
Berlin2024

Spectral Estimators for High-Dimensional Matrix Inference

Farzad Pourkamali

A key challenge across many disciplines is to extract meaningful information from data which is often obscured by noise. These datasets are typically represented as large matrices. Given the current trend of ever-increasing data volumes, with datasets grow ...
EPFL2024
Show more
Related concepts (11)
Image noise
Image noise is random variation of brightness or color information in s, and is usually an aspect of electronic noise. It can be produced by the and circuitry of a or digital camera. Image noise can also originate in film grain and in the unavoidable shot noise of an ideal photon detector. Image noise is an undesirable by-product of image capture that obscures the desired information. Typically the term “image noise” is used to refer to noise in 2D images, not 3D images.
Background noise
Background noise or ambient noise is any sound other than the sound being monitored (primary sound). Background noise is a form of noise pollution or interference. Background noise is an important concept in setting noise levels. Background noises include environmental noises such as water waves, traffic noise, alarms, extraneous speech, bioacoustic noise from animals, and electrical noise from devices such as refrigerators, air conditioning, power supplies, and motors.
Noise floor
In signal theory, the noise floor is the measure of the signal created from the sum of all the noise sources and unwanted signals within a measurement system, where noise is defined as any signal other than the one being monitored. In radio communication and electronics, this may include thermal noise, black body, cosmic noise as well as atmospheric noise from distant thunderstorms and similar and any other unwanted man-made signals, sometimes referred to as incidental noise.
Show more
Related MOOCs (10)
Digital Signal Processing I
Basic signal processing concepts, Fourier analysis and filters. This module can be used as a starting point or a basic refresher in elementary DSP
Digital Signal Processing II
Adaptive signal processing, A/D and D/A. This module provides the basic tools for adaptive filtering and a solid mathematical framework for sampling and quantization
Digital Signal Processing III
Advanced topics: this module covers real-time audio processing (with examples on a hardware board), image processing and communication system design.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.