In signal processing, noise is a general term for unwanted (and, in general, unknown) modifications that a signal may suffer during capture, storage, transmission, processing, or conversion.
Sometimes the word is also used to mean signals that are random (unpredictable) and carry no useful information; even if they are not interfering with other signals or may have been introduced intentionally, as in comfort noise.
Noise reduction, the recovery of the original signal from the noise-corrupted one, is a very common goal in the design of signal processing systems, especially filters. The mathematical limits for noise removal are set by information theory.
Signal processing noise can be classified by its statistical properties (sometimes called the "color" of the noise) and by how it modifies the intended signal:
Additive noise, gets added to the intended signal
White noise
Additive white Gaussian noise
Black noise
Gaussian noise
Pink noise or flicker noise, with 1/f power spectrum
Brownian noise, with 1/f2 power spectrum
Contaminated Gaussian noise, whose PDF is a linear mixture of Gaussian PDFs
Power-law noise
Cauchy noise
Multiplicative noise, multiplies or modulates the intended signal
Quantization error, due to conversion from continuous to discrete values
Poisson noise, typical of signals that are rates of discrete events
Shot noise, e.g.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Dans une , on appelle bruit numérique toute fluctuation parasite ou dégradation que subit l'image de l'instant de son acquisition jusqu'à son enregistrement. Le bruit numérique est une notion générale à tout type d'image numérique, et ce quel que soit le type du capteur à l'origine de son acquisition (appareil photo numérique, scanner, caméra thermique...etc). Les sources de bruit numérique sont multiples, certaines sont physiques liées à la qualité de l’éclairage, de la scène, la température du capteur, la stabilité du capteur de l'image durant l'acquisition, d'autres apparaissent durant la numérisation de l'information.
En traitement du signal, on appelle bruit de fond toute composante non désirée affectant la sortie d'un dispositif indépendamment du signal présent à son entrée. Le bruit de fond se décompose en bruit propre, que cause le dispositif lui-même, et en perturbations originaires de l'extérieur qu'il capte malencontreusement. Au fur et à mesure que le signal se rapproche, puis s'enfonce en dessous du niveau du bruit de fond, la quantité d'informations qu'il peut transporter décroît , il devient plus difficile à détecter, et il finit par se dissoudre dans l'incertitude.
En traitement du signal, on appelle bruit de fond toute composante non désirée affectant la sortie d'un dispositif indépendamment du signal présent à son entrée. Le bruit de fond se décompose en bruit propre, que cause le dispositif lui-même, et en perturbations originaires de l'extérieur qu'il capte malencontreusement. Au fur et à mesure que le signal se rapproche, puis s'enfonce en dessous du niveau du bruit de fond, la quantité d'informations qu'il peut transporter décroît , il devient plus difficile à détecter, et il finit par se dissoudre dans l'incertitude.
The course deals with the concept of measuring in different domains, particularly in the electrical, optical, and microscale domains. The course will end with a perspective on quantum measurements, wh
Building up on the basic concepts of sampling, filtering and Fourier transforms, we address stochastic modeling, spectral analysis, estimation and prediction, classification, and adaptive filtering, w
A key challenge across many disciplines is to extract meaningful information from data which is often obscured by noise. These datasets are typically represented as large matrices. Given the current trend of ever-increasing data volumes, with datasets grow ...
The proliferation of microscopy methods for live-cell imaging offers many new possibilities for users but can also be challenging to navigate. The prevailing challenge in live-cell fluorescence microscopy is capturing intra-cellular dynamics while preservi ...
We study the hitting probabilities of the solution to a system of d stochastic heat equations with additive noise subject to Dirichlet boundary conditions. We show that for any bounded Borel set with positive (d-6)\documentclass[12pt]{minimal} \usepackage{ ...