Wolff–Parkinson–White syndrome (WPWS) is a disorder due to a specific type of problem with the electrical system of the heart involving an accessory pathway able to conduct electrical current between the atria and the ventricles, thus bypassing the atrioventricular node. About 60% of people with the electrical problem developed symptoms, which may include an abnormally fast heartbeat, palpitations, shortness of breath, lightheadedness, or syncope. Rarely, cardiac arrest may occur. The most common type of irregular heartbeat that occurs is known as paroxysmal supraventricular tachycardia.
The cause of WPW is typically unknown and is likely due to a combination of chance and genetic factors. A small number of cases are due to a mutation of the PRKAG2 gene which may be inherited in an autosomal dominant fashion. The underlying mechanism involves an accessory electrical conduction pathway between the atria and the ventricles. It is associated with other conditions such as Ebstein anomaly and hypokalemic periodic paralysis. The diagnosis of WPW occurs with a combination of palpitations and when an electrocardiogram (ECG) show a short PR interval and a delta wave. It is a type of pre-excitation syndrome.
WPW syndrome may be monitored or treated with either medications or an ablation (destroying the tissues) such as with radiofrequency catheter ablation. It affects between 0.1 and 0.3% in the population. The risk of death in those without symptoms is about 0.5% per year in children and 0.1% per year in adults. In some cases, non-invasive monitoring may help to more carefully risk stratify patients into a lower risk category. In those without symptoms ongoing observation may be reasonable. In those with WPW complicated by atrial fibrillation, cardioversion or the medication procainamide may be used. The condition is named after Louis Wolff, John Parkinson, and Paul Dudley White who described the ECG findings in 1930.
People with WPW are usually asymptomatic when not having a fast heart rate.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Arrhythmias, also known as cardiac arrhythmias, heart arrhythmias, or dysrhythmias, are irregularities in the heartbeat, including when it is too fast or too slow. A resting heart rate that is too fast – above 100 beats per minute in adults – is called tachycardia, and a resting heart rate that is too slow – below 60 beats per minute – is called bradycardia. Some types of arrhythmias have no symptoms. Symptoms, when present, may include palpitations or feeling a pause between heartbeats.
Supraventricular tachycardia (SVT) is an umbrella term for fast heart rhythms arising from the upper part of the heart. This is in contrast to the other group of fast heart rhythms – ventricular tachycardia, which start within the lower chambers of the heart. There are four main types of SVT: atrial fibrillation, atrial flutter, paroxysmal supraventricular tachycardia (PSVT), and Wolff–Parkinson–White syndrome. The symptoms of SVT include palpitations, feeling of faintness, sweating, shortness of breath, and/or chest pain.
Atrial flutter (AFL) is a common abnormal heart rhythm that starts in the atrial chambers of the heart. When it first occurs, it is usually associated with a fast heart rate and is classified as a type of supraventricular tachycardia. Atrial flutter is characterized by a sudden-onset (usually) regular abnormal heart rhythm on an electrocardiogram (ECG) in which the heart rate is fast. Symptoms may include a feeling of the heart beating too fast, too hard, or skipping beats, chest discomfort, difficulty breathing, a feeling as if one's stomach has dropped, a feeling of being light-headed, or loss of consciousness.
This course integrates knowledge in basic, systems, clinical and computational neuroscience, and engineering with the goal of translating this integrated knowledge into the development of novel method
Le but est de connaitre et comprendre le fonctionnement des systèmes cardiovasculaire, urinaire, respiratoire, digestif, ainsi que du métabolisme de base et sa régulation afin de déveloper une réflect
Background Superimposition of farfield (FF) and nearfield (NF) bipolar voltage electrograms (BVE) complicates the confirmation of pulmonary vein (PV) isolation after catheter ablation of atrial fibrillation. Our aim was to develop an automatic algorithm ba ...
Stimulated by the COVID-19 outbreak, the global healthcare industry better acknowledges the necessity of innovating novel methods for remote healthcare monitoring and treating patients outside clinics. Here we report the development of two different types ...
The 12-lead electrocardiogram (ECG) is a major diagnostic test for cardiovascular diseases and enhanced automated analysis tools might lead to more reliable diagnosis and improved clinical practice. Deep neural networks are models composed of stacked trans ...