Concept

Delone set

In the mathematical theory of metric spaces, ε-nets, ε-packings, ε-coverings, uniformly discrete sets, relatively dense sets, and Delone sets (named after Boris Delone) are several closely related definitions of well-spaced sets of points, and the packing radius and covering radius of these sets measure how well-spaced they are. These sets have applications in coding theory, approximation algorithms, and the theory of quasicrystals. If (M,d) is a metric space, and X is a subset of M, then the packing radius of X is half of the infimum of distances between distinct members of X. If the packing radius is r, then open balls of radius r centered at the points of X will all be disjoint from each other, and each open ball centered at one of the points of X with radius 2r will be disjoint from the rest of X. The covering radius of X is the infimum of the numbers r such that every point of M is within distance r of at least one point in X; that is, it is the smallest radius such that closed balls of that radius centered at the points of X have all of M as their union. An ε-packing is a set X of packing radius ≥ ε/2 (equivalently, minimum distance ≥ ε), an ε-covering is a set X of covering radius ≤ ε, and an ε-net is a set that is both an ε-packing and an ε-covering. A set is uniformly discrete if it has a nonzero packing radius, and relatively dense if it has a finite covering radius. A Delone set is a set that is both uniformly discrete and relatively dense; thus, every ε-net is Delone, but not vice versa. As the most restrictive of the definitions above, ε-nets are at least as difficult to construct as ε-packings, ε-coverings, and Delone sets. However, whenever the points of M have a well-ordering, transfinite induction shows that it is possible to construct an ε-net N, by including in N every point for which the infimum of distances to the set of earlier points in the ordering is at least ε.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.