Concept

Babylonian mathematics

Summary
Babylonian mathematics (also known as Assyro-Babylonian mathematics) are the mathematics developed or practiced by the people of Mesopotamia, from the days of the early Sumerians to the centuries following the fall of Babylon in 539 BC. Babylonian mathematical texts are plentiful and well edited. With respect to time they fall in two distinct groups: one from the Old Babylonian period (1830–1531 BC), the other mainly Seleucid from the last three or four centuries BC. With respect to content, there is scarcely any difference between the two groups of texts. Babylonian mathematics remained constant, in character and content, for over a millennium. In contrast to the scarcity of sources in Egyptian mathematics, knowledge of Babylonian mathematics is derived from some 400 clay tablets unearthed since the 1850s. Written in Cuneiform script, tablets were inscribed while the clay was moist, and baked hard in an oven or by the heat of the sun. The majority of recovered clay tablets date from 1800 to 1600 BC, and cover topics that include fractions, algebra, quadratic and cubic equations and the Pythagorean theorem. The Babylonian tablet YBC 7289 gives an approximation to accurate to three significant sexagesimal digits (about six significant decimal digits). Babylonian mathematics is a range of numeric and more advanced mathematical practices in the ancient Near East, written in cuneiform script. Study has historically focused on the Old Babylonian period in the early second millennium BC due to the wealth of data available. There has been debate over the earliest appearance of Babylonian mathematics, with historians suggesting a range of dates between the 5th and 3rd millennia BC. Babylonian mathematics was primarily written on clay tablets in cuneiform script in the Akkadian or Sumerian languages. "Babylonian mathematics" is perhaps an unhelpful term since the earliest suggested origins date to the use of accounting devices, such as bullae and tokens, in the 5th millennium BC.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.