Talimogene laherparepvec, sold under the brand name Imlygic, is a biopharmaceutical medication used to treat melanoma that cannot be operated on; it is injected directly into a subset of lesions which generates a systemic immune response against the recipient's cancer. The final four year analysis from the pivotal phase 3 study upon which TVEC was approved by the FDA showed a 31.5% response rate with a 16.9% complete response (CR) rate. There was also a substantial and statistically significant survival benefit in patients with earlier metastatic disease (stages IIIb-IVM1a) and in patients who hadn't received prior systemic treatment for melanoma. The earlier stage group had a reduction in the risk of death of approximately 50% with one in four patients appearing to have met, or be close to be reaching, the medical definition of cure. Real world use of talimogene laherparepvec have shown response rates of up to 88.5% with CR rates of up to 61.5%.
Around half of people treated with talimogene laherparepvec in clinical trials experienced fatigue and chills; around 40% had fever, around 35% had nausea, and around 30% had flu-like symptoms as well as pain at the injection site. The reactions were mild to moderate in severity; 2% of people had severe reactions and these were generally cellulitis.
Talimogene laherparepvec is a genetically engineered herpes virus (an oncolytic herpes virus). Two genes were removed – one that shuts down an individual cell's defenses, and another that helps the virus evade the immune system – and a gene for human GM-CSF was added. The drug works by replicating in cancer cells, causing them to burst; it was also designed to stimulate an immune response against the patient's cancer, which has been demonstrated by multiple pieces of data, including regression of tumors which have not been injected with talimogene laherparepvec.
The drug was created and initially developed by BioVex, Inc. and was continued by Amgen, which acquired BioVex in 2011.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Virotherapy is a treatment using biotechnology to convert viruses into therapeutic agents by reprogramming viruses to treat diseases. There are three main branches of virotherapy: anti-cancer oncolytic viruses, viral vectors for gene therapy and viral immunotherapy. These branches use three different types of treatment methods: gene overexpression, gene knockout, and suicide gene delivery. Gene overexpression adds genetic sequences that compensate for low to zero levels of needed gene expression.
An oncolytic virus is a virus that preferentially infects and kills cancer cells. As the infected cancer cells are destroyed by oncolysis, they release new infectious virus particles or virions to help destroy the remaining tumour. Oncolytic viruses are thought not only to cause direct destruction of the tumour cells, but also to stimulate host anti-tumour immune system responses. Oncolytic viruses also have the ability to affect the tumor micro-environment in multiple ways.
Gene therapy is a medical technology which aims to produce a therapeutic effect through the manipulation of gene expression or through altering the biological properties of living cells. The first attempt at modifying human DNA was performed in 1980, by Martin Cline, but the first successful nuclear gene transfer in humans, approved by the National Institutes of Health, was performed in May 1989. The first therapeutic use of gene transfer as well as the first direct insertion of human DNA into the nuclear genome was performed by French Anderson in a trial starting in September 1990.
Mutations in nuclear-encoded mitochondrial genes are responsible for a broad spectrum of disorders among which Leigh syndrome is the most common in infancy. No effective therapies are available for this severe disease mainly because of the limited capabili ...
Melanoma causes the vast majority of skin cancer deaths, and there is currently no conventional treatment available that is able to cure metastatic melanoma patients. However, a novel treatment modality has recently emerged: cancer immunotherapy. Cancer im ...
EPFL2016
, , , , , ,
In near infrared fluorescence-guided surgical oncology, it is challenging to distinguish healthy from cancerous tissue. One promising research avenue consists in the analysis of the exogenous fluorophores' lifetime, which are however in the (sub-)nanosecon ...