In mathematics, in particular in nonlinear analysis, a Fréchet manifold is a topological space modeled on a Fréchet space in much the same way as a manifold is modeled on a Euclidean space.
More precisely, a Fréchet manifold consists of a Hausdorff space with an atlas of coordinate charts over Fréchet spaces whose transitions are smooth mappings. Thus has an open cover and a collection of homeomorphisms onto their images, where are Fréchet spaces, such that
is smooth for all pairs of indices
It is by no means true that a finite-dimensional manifold of dimension is homeomorphic to or even an open subset of However, in an infinite-dimensional setting, it is possible to classify "well-behaved" Fréchet manifolds up to homeomorphism quite nicely. A 1969 theorem of David Henderson states that every infinite-dimensional, separable, metric Fréchet manifold can be embedded as an open subset of the infinite-dimensional, separable Hilbert space, (up to linear isomorphism, there is only one such space).
The embedding homeomorphism can be used as a global chart for Thus, in the infinite-dimensional, separable, metric case, up to homeomorphism, the "only" topological Fréchet manifolds are the open subsets of the separable infinite-dimensional Hilbert space. But in the case of or Fréchet manifolds (up to the appropriate notion of diffeomorphism) this fails.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course is an introduction to the theory of Riemann surfaces. Riemann surfaces naturally appear is mathematics in many different ways: as a result of analytic continuation, as quotients of complex
In differential geometry, a Riemannian manifold or Riemannian space (M, g), so called after the German mathematician Bernhard Riemann, is a real, smooth manifold M equipped with a positive-definite inner product gp on the tangent space TpM at each point p. The family gp of inner products is called a Riemannian metric (or Riemannian metric tensor). Riemannian geometry is the study of Riemannian manifolds. A common convention is to take g to be smooth, which means that for any smooth coordinate chart (U, x) on M, the n2 functions are smooth functions.
In mathematics, a diffeomorphism is an isomorphism of smooth manifolds. It is an invertible function that maps one differentiable manifold to another such that both the function and its inverse are differentiable. Given two manifolds and , a differentiable map is called a diffeomorphism if it is a bijection and its inverse is differentiable as well. If these functions are times continuously differentiable, is called a -diffeomorphism. Two manifolds and are diffeomorphic (usually denoted ) if there is a diffeomorphism from to .
The goal of this thesis is the development and the analysis of numerical methods for problems where the unknown is a curve on a smooth manifold. In particular, the thesis is structured around the three following problems: homotopy continuation, curve inter ...
This work studies the problem of statistical inference for Fréchet means in the Wasserstein space of measures on Euclidean spaces, W2(Rd). This question arises naturally from the problem of separating amplitude and phase variation i ...
In this paper we show that the incompressible Euler equation on the Sobolev space H-s(R-n), s> n/2+1, can be expressed in Lagrangian coordinates as a geodesic equation on an infinite dimensional manifold. Moreover the Christoffel map describing the geodesi ...