Physical oceanography is the study of physical conditions and physical processes within the ocean, especially the motions and physical properties of ocean waters.
Physical oceanography is one of several sub-domains into which oceanography is divided. Others include biological, chemical and geological oceanography.
Physical oceanography may be subdivided into descriptive and dynamical physical oceanography.
Descriptive physical oceanography seeks to research the ocean through observations and complex numerical models, which describe the fluid motions as precisely as possible.
Dynamical physical oceanography focuses primarily upon the processes that govern the motion of fluids with emphasis upon theoretical research and numerical models. These are part of the large field of Geophysical Fluid Dynamics (GFD) that is shared together with meteorology. GFD is a sub field of Fluid dynamics describing flows occurring on spatial and temporal scales that are greatly influenced by the Coriolis force.
Roughly 97% of the planet's water is in its oceans, and the oceans are the source of the vast majority of water vapor that condenses in the atmosphere and falls as rain or snow on the continents. The tremendous heat capacity of the oceans moderates the planet's climate, and its absorption of various gases affects the composition of the atmosphere. The ocean's influence extends even to the composition of volcanic rocks through seafloor metamorphism, as well as to that of volcanic gases and magmas created at subduction zones.
From sea level, the oceans are far deeper than the continents are tall; examination of the Earth's hypsographic curve shows that the average elevation of Earth's landmasses is only , while the ocean's average depth is . Though this apparent discrepancy is great, for both land and sea, the respective extremes such as mountains and trenches are rare.
Because the vast majority of the world ocean's volume is deep water, the mean temperature of seawater is low; roughly 75% of the ocean's volume has a temperature from 0° – 5 °C (Pinet 1996).
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Earth science or geoscience includes all fields of natural science related to the planet Earth. This is a branch of science dealing with the physical, chemical, and biological complex constitutions and synergistic linkages of Earth's four spheres: the biosphere, hydrosphere, atmosphere, and geosphere (or lithosphere). Earth science can be considered to be a branch of planetary science, but with a much older history. There are reductionist and holistic approaches to Earth sciences.
In physical oceanography and fluid dynamics, the wind stress is the shear stress exerted by the wind on the surface of large bodies of water – such as oceans, seas, estuaries and lakes. Stress is the quantity that describes the magnitude of a force that is causing a deformation of an object. Therefore, stress is defined as the force per unit area and its SI unit is the Pascal. When the deforming force acts parallel to the object's surface, this force is called a shear force and the stress it causes is called a shear stress.
Marine geology or geological oceanography is the study of the history and structure of the ocean floor. It involves geophysical, geochemical, sedimentological and paleontological investigations of the ocean floor and coastal zone. Marine geology has strong ties to geophysics and to physical oceanography. Marine geological studies were of extreme importance in providing the critical evidence for sea floor spreading and plate tectonics in the years following World War II.
This course covers principles of snow physics, snow hydrology, snow-atmosphere interaction and snow modeling. It transmits sound understanding of physical processes within the snow and at its interfac
The atmospheric layer adjacent to the earth's surface is of crucial importance for weather models due to the exchange of energy between the surface and the atmosphere. This exchange is dependent on the various surface properties and influences the state of ...
Offshore floating wind turbines (OFWTs) are becoming increasingly popular due to their ability to exploit deep-sea wind resources. However, since wind turbines are installed on floaters instead of solid foundations, the dynamic response of an OFWT due to ...
Wave breaking is a complex physical process about which open questions remain. For some applications, it is critical to include breaking effects in phase-resolved envelope-based wave models such as the non-linear Schr & ouml;dinger. A promising approach is ...