A foreign function interface (FFI) is a mechanism by which a program written in one programming language can call routines or make use of services written or compiled in another one. An FFI is often used in contexts where calls are made into binary dynamic-link library.
The term comes from the specification for Common Lisp, which explicitly refers to the programming language feature enabling for inter-language calls as such; the term is also often used officially by the Haskell, Rust, Python, and LuaJIT (Lua) interpreter and compiler documentations. Other languages use other terminology: the Ada programming language talks about "language bindings", while Java refers to its FFI as the JNI (Java Native Interface) or JNA (Java Native Access). Foreign function interface has become generic terminology for mechanisms which provide such services.
The primary function of a foreign function interface is to mate the semantics and calling conventions of one programming language (the host language, or the language which defines the FFI), with the semantics and conventions of another (the guest language). This process must also take into consideration the runtime environments and/or application binary interfaces of both. This can be done in several ways:
Requiring that guest-language functions which are to be host-language callable be specified or implemented in a particular way, often using a compatibility library of some sort.
Use of a tool to automatically "wrap" guest-language functions with appropriate glue code, which performs any necessary translation.
Use of wrapper libraries
Restricting the set of host language capabilities which can be used cross-language. For example, C++ functions called from C may not (in general) include reference parameters or throw exceptions.
FFIs may be complicated by the following considerations:
If one language supports garbage collection (GC) and the other does not; care must be taken that the non-GC language code does nothing to cause GC in the other to fail.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
PyPy ('paɪpaɪ) is an implementation of the Python programming language. PyPy often runs faster than the standard implementation CPython because PyPy uses a just-in-time compiler. Most Python code runs well on PyPy except for code that depends on CPython extensions, which either does not work or incurs some overhead when run in PyPy. Internally, PyPy uses a technique known as meta-tracing, which transforms an interpreter into a tracing just-in-time compiler.
An () is a way for two or more computer programs to communicate with each other. It is a type of software interface, offering a service to other pieces of software. A document or standard that describes how to build or use such a connection or interface is called an . A computer system that meets this standard is said to or an API. The term API may refer either to the specification or to the implementation. In contrast to a user interface, which connects a computer to a person, an application programming interface connects computers or pieces of software to each other.
In compiler construction, name mangling (also called name decoration) is a technique used to solve various problems caused by the need to resolve unique names for programming entities in many modern programming languages. It provides a way of encoding additional information in the name of a function, structure, class or another datatype in order to pass more semantic information from the compiler to the linker.
This seminar teaches the participants to use advanced Python concepts for writing easier to read, more flexible and faster code.
It teaches concepts in a hands-on and tangible fashion, providing examp
This course focuses on mobile application programming for the Android ecosystem. Students learn to develop distributed Apps on mobile platforms, interfacing with multiple heterogeneous devices and the
L'objectif de ce cours est d'introduire les étudiants à la pensée algorithmique, de les familiariser avec les fondamentaux de l'Informatique et de développer une première compétence en programmation (
Extracting value and insights from increasingly heterogeneous data sources involves multiple systems combining and consuming the data. With multi-modal and context-rich data such as strings, text, videos, or images, the problem of standardizing the data mo ...
Context.Gaia's readout window strategy is challenged by very dense fields in the sky. Therefore, in addition to standard Gaia observations, full Sky Mapper (SM) images were recorded for nine selected regions in the sky. A new software pipeline exploits the ...
Modern programmers routinely use third-party code, and infrastructure operators deploy software they did not write. This would not be possible without semantic interfaces---documentation, header files, specifications---that succinctly describe what that th ...