Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Side-channel CPU disassembly is a side-channel attack that allows an adversary to recover instructions executed by a processor. Not only does such an attack compromise code confidentiality, it can also reveal critical information on the system’s internals. ...
In this paper, we propose and compare personalized models for Productive Engagement (PE) recognition. PE is defined as the level of engagement that maximizes learning. Previously, in the context of robot-mediated collaborative learning, a framework of prod ...
Thanks to Deep Learning Text-To-Speech (TTS) has achieved high audio quality with large databases. But at the same time the complex models lost any ability to control or interpret the generation process. For the big challenge of affective TTS it is infeasi ...
In this thesis, we reveal that supervised learning and inverse problems share similar mathematical foundations. Consequently, we are able to present a unified variational view of these tasks that we formulate as optimization problems posed over infinite-di ...
Machine learning has become the state of the art for the solution of the diverse inverse problems arising from computer vision and medical imaging, e.g. denoising, super-resolution, de-blurring, reconstruction from scanner data, quantitative magnetic reson ...
The ability to forecast human motion, called ``human trajectory forecasting", is a critical requirement for mobility applications such as autonomous driving and robot navigation. Humans plan their path taking into account what might happen in the future. S ...
Implicit neural representations (INRs) have recently emerged as a promising alternative to classical discretized representations of signals. Nevertheless, despite their practical success, we still do not understand how INRs represent signals. We propose a ...
We present Deep MinCut (DMC), an unsupervised approach to learn node embeddings for graph -structured data. It derives node representations based on their membership in communities. As such, the embeddings directly provide insights into the graph structure ...
Modern image inpainting systems, despite the significant progress, often struggle with large missing areas, complex geometric structures, and high-resolution images. We find that one of the main reasons for that is the lack of an effective receptive field ...
Data-driven and model-driven methodologies can be regarded as competitive fields since they tackle similar problems such as prediction. However, these two fields can learn from each other to improve themselves. Indeed, data-driven methodologies have been d ...