Ring systemA ring system is a disc or ring, orbiting an astronomical object, that is composed of solid material such as dust and moonlets, and is a common component of satellite systems around giant planets like Saturn. A ring system around a planet is also known as a planetary ring system. The most prominent and most famous planetary rings in the Solar System are those around Saturn, but the other three giant planets (Jupiter, Uranus, and Neptune) also have ring systems.
Tycho BraheTycho Brahe (ˈtaɪkoʊ_ˈbrɑː(h)i,_-(h)ə) ; born Tyge Ottesen Brahe, generally called Tycho; 14 December 1546 24 October 1601) was a Danish astronomer, known for his comprehensive and unprecedentedly accurate astronomical observations. He was known during his lifetime as an astronomer, astrologer, and alchemist. He was the last major astronomer before the invention of the telescope. In 1572, Tycho noticed a completely new star that was brighter than any star or planet.
Jet Propulsion LaboratoryJet Propulsion Laboratory (JPL) is a federally funded research and development center in the City of Pasadena, California, United States. Founded in 1936 by Caltech researchers, the laboratory is now owned and sponsored by the National Aeronautics and Space Administration (NASA) and administrated and managed by the California Institute of Technology. The laboratory's primary function is the construction and operation of planetary robotic spacecraft, though it also conducts Earth-orbit and astronomy missions.
International Astronomical UnionThe International Astronomical Union (IAU; Union astronomique internationale, UAI) is a non-governmental organisation with the objective of advancing astronomy in all aspects, including promoting astronomical research, outreach, education, and development through global cooperation. It was founded in 1919 and is based in Paris, France. The IAU is composed of individual members, who include both professional astronomers and junior scientists, and national members, such as professional associations, national societies, or academic institutions.
Planetary nomenclaturePlanetary nomenclature, like terrestrial nomenclature, is a system of uniquely identifying features on the surface of a planet or natural satellite so that the features can be easily located, described, and discussed. Since the invention of the telescope, astronomers have given names to the surface features they have discerned, especially on the Moon and Mars. To found an authority on planetary nomenclature, the International Astronomical Union (IAU) was organized in 1919 to designate and standardize names for features on Solar System bodies.
Geometric albedoIn astronomy, the geometric albedo of a celestial body is the ratio of its actual brightness as seen from the light source (i.e. at zero phase angle) to that of an idealized flat, fully reflecting, diffusively scattering (Lambertian) disk with the same cross-section. (This phase angle refers to the direction of the light paths and is not a phase angle in its normal meaning in optics or electronics.) Diffuse scattering implies that radiation is reflected isotropically with no memory of the location of the incident light source.
Metallic hydrogenMetallic hydrogen is a phase of hydrogen in which it behaves like an electrical conductor. This phase was predicted in 1935 on theoretical grounds by Eugene Wigner and Hillard Bell Huntington. At high pressure and temperatures, metallic hydrogen can exist as a partial liquid rather than a solid, and researchers think it might be present in large quantities in the hot and gravitationally compressed interiors of Jupiter and Saturn, as well as in some exoplanets.
Invariable planeThe invariable plane of a planetary system, also called Laplace's invariable plane, is the plane passing through its barycenter (center of mass) perpendicular to its angular momentum vector. In the Solar System, about 98% of this effect is contributed by the orbital angular momenta of the four jovian planets (Jupiter, Saturn, Uranus, and Neptune). The invariable plane is within 0.5° of the orbital plane of Jupiter, and may be regarded as the weighted average of all planetary orbital and rotational planes.
Frost line (astrophysics)In astronomy or planetary science, the frost line, also known as the snow line or ice line, is the minimum distance from the central protostar of a solar nebula where the temperature is low enough for volatile compounds such as water, ammonia, methane, carbon dioxide and carbon monoxide to condense into solid grains, which will allow their accretion into planetesimals. Beyond the line, otherwise gaseous compounds (which are much more abundant) can be quite easily condensed to allow formation of gas and ice giants; while within it, only heavier compounds can be accreted to form the typically much smaller rocky planets.
Roche limitIn celestial mechanics, the Roche limit, also called Roche radius, is the distance from a celestial body within which a second celestial body, held together only by its own force of gravity, will disintegrate because the first body's tidal forces exceed the second body's self-gravitation. Inside the Roche limit, orbiting material disperses and forms rings, whereas outside the limit, material tends to coalesce. The Roche radius depends on the radius of the first body and on the ratio of the bodies' densities.