Summary
Metallic hydrogen is a phase of hydrogen in which it behaves like an electrical conductor. This phase was predicted in 1935 on theoretical grounds by Eugene Wigner and Hillard Bell Huntington. At high pressure and temperatures, metallic hydrogen can exist as a partial liquid rather than a solid, and researchers think it might be present in large quantities in the hot and gravitationally compressed interiors of Jupiter and Saturn, as well as in some exoplanets. Though often placed at the top of the alkali metal column in the periodic table, hydrogen does not, under ordinary conditions, exhibit the properties of an alkali metal. Instead, it forms diatomic molecules, similar to halogens and some nonmetals in the second period of the periodic table, such as nitrogen and oxygen. Diatomic hydrogen is a gas that, at atmospheric pressure, liquefies and solidifies only at very low temperature (20 K and 14 K respectively). In 1935, physicists Eugene Wigner and Hillard Bell Huntington predicted that under an immense pressure of around , hydrogen would display metallic properties: instead of discrete molecules (which consist of two electrons bound between two protons), a bulk phase would form with a solid lattice of protons and the electrons delocalized throughout. Since then, producing metallic hydrogen in the laboratory has been described as "the holy grail of high-pressure physics". The initial prediction about the amount of pressure needed was eventually shown to be too low. Since the first work by Wigner and Huntington, the more modern theoretical calculations point toward higher but nonetheless potentially achievable metalization pressures of around . Helium-4 is a liquid at normal pressure near absolute zero, a consequence of its high zero-point energy (ZPE). The ZPE of protons in a dense state is also high, and a decline in the ordering energy (relative to the ZPE) is expected at high pressures.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.