Scientific management is a theory of management that analyzes and synthesizes workflows. Its main objective is improving economic efficiency, especially labor productivity. It was one of the earliest attempts to apply science to the engineering of processes to management. Scientific management is sometimes known as Taylorism after its pioneer, Frederick Winslow Taylor. Taylor began the theory's development in the United States during the 1880s and 1890s within manufacturing industries, especially steel. Its peak of influence came in the 1910s. Although Taylor died in 1915, by the 1920s scientific management was still influential but had entered into competition and syncretism with opposing or complementary ideas. Although scientific management as a distinct theory or school of thought was obsolete by the 1930s, most of its themes are still important parts of industrial engineering and management today. These include: analysis; synthesis; logic; rationality; empiricism; work ethic; efficiency through elimination of wasteful activities (as in muda, muri and mura); standardization of best practices; disdain for tradition preserved merely for its own sake or to protect the social status of particular workers with particular skill sets; the transformation of craft production into mass production; and knowledge transfer between workers and from workers into tools, processes, and documentation. Taylor's own names for his approach initially included "shop management" and "process management". However, "scientific management" came to national attention in 1910 when crusading attorney Louis Brandeis (then not yet Supreme Court justice) popularized the term. Brandeis had sought a consensus term for the approach with the help of practitioners like Henry L. Gantt and Frank B. Gilbreth. Brandeis then used the consensus of "SCIENTIFIC management" when he argued before the Interstate Commerce Commission (ICC) that a proposed increase in railroad rates was unnecessary despite an increase in labor costs; he alleged scientific management would overcome railroad inefficiencies (The ICC ruled against the rate increase, but also dismissed as insufficiently substantiated that concept the railroads were necessarily inefficient.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (4)
HUM-266: Anthropology of knowledge
Peut-on parler des savoirs du point de vue des opérations et des acteurs qui les construisent plus qu'à travers les contenus auxquels ils aboutissent et auxquels on les identifie ?
MGT-426: Logistics and demand analysis
La logistique, fonction transversale par excellence, intègre toutes les dimensions des processus industriels à ajout de valeur, de l'approvisionnement à la distribution aux clients et au-delà en intég
CIVIL-438: Risk analysis and management
Le cours vise à former les étudiants aux méthodes et outils permettant d'appréhender de manière fondée et scientifique la question de l'analyse et de la gestion des risques technologiques et naturels,
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.