Summary
The gravitational force equivalent, or, more commonly, g-force, is a measurement of the type of force per unit mass – typically acceleration – that causes a perception of weight, with a g-force of 1 g (standard gravity force; not gram in mass measurement) equal to the conventional value of gravitational acceleration on Earth, g, of about 9.8m/s2. Since g-forces indirectly produce weight, any g-force can be described as a "weight per unit mass" (see the synonym specific weight). When the g-force is produced by the surface of one object being pushed by the surface of another object, the reaction force to this push produces an equal and opposite weight for every unit of each object's mass. The types of forces involved are transmitted through objects by interior mechanical stresses. Gravitational acceleration (except certain electromagnetic force influences) is the cause of an object's acceleration in relation to free fall. The g-force experienced by an object is due to the vector sum of all non-gravitational forces acting on an object's freedom to move. In practice, as noted, these are surface-contact forces between objects. Such forces cause stresses and strains on objects, since they must be transmitted from an object surface. Because of these strains, large g-forces may be destructive. Gravity acting alone does not produce a g-force, even though g-forces are expressed in multiples of the free-fall acceleration of standard gravity. Thus, the standard gravitational force at the Earth's surface produces g-force only indirectly, as a result of resistance to it by mechanical forces. It is these mechanical forces that actually produce the g-force on a mass. For example, a force of 1 g on an object sitting on the Earth's surface is caused by the mechanical force exerted in the upward direction by the ground, keeping the object from going into free fall. The upward contact force from the ground ensures that an object at rest on the Earth's surface is accelerating relative to the free-fall condition.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.