In science and engineering, the weight of an object is the force acting on the object due to acceleration or gravity.
Some standard textbooks define weight as a vector quantity, the gravitational force acting on the object. Others define weight as a scalar quantity, the magnitude of the gravitational force. Yet others define it as the magnitude of the reaction force exerted on a body by mechanisms that counteract the effects of gravity: the weight is the quantity that is measured by, for example, a spring scale. Thus, in a state of free fall, the weight would be zero. In this sense of weight, terrestrial objects can be weightless: so if one ignores air resistance, one could say the legendary apple falling from the tree, on its way to meet the ground near Isaac Newton, was weightless.
The unit of measurement for weight is that of force, which in the International System of Units (SI) is the newton. For example, an object with a mass of one kilogram has a weight of about 9.8 newtons on the surface of the Earth, and about one-sixth as much on the Moon. Although weight and mass are scientifically distinct quantities, the terms are often confused with each other in everyday use (e.g. comparing and converting force weight in pounds to mass in kilograms and vice versa).
Further complications in elucidating the various concepts of weight have to do with the theory of relativity according to which gravity is modeled as a consequence of the curvature of spacetime. In the teaching community, a considerable debate has existed for over half a century on how to define weight for their students. The current situation is that a multiple set of concepts co-exist and find use in their various contexts.
Discussion of the concepts of heaviness (weight) and lightness (levity) date back to the ancient Greek philosophers. These were typically viewed as inherent properties of objects. Plato described weight as the natural tendency of objects to seek their kin. To Aristotle, weight and levity represented the tendency to restore the natural order of the basic elements: air, earth, fire and water.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
La Physique Générale I (avancée) couvre la mécanique du point et du solide indéformable. Apprendre la mécanique, c'est apprendre à mettre sous forme mathématique un phénomène physique, en modélisant l
Le but du cours de physique générale est de donner à l'étudiant les notions de base nécessaires à la compréhension des phénomènes physiques. L'objectif est atteint lorsque l'étudiant est capable de pr
Le cours "Physique générale" fournit les notions de base nécessaires à la compréhension de phénomènes physiques comme la mécanique du point matériel. L'objectif est atteint lorsque que l'on peut prédi
The gravitational force equivalent, or, more commonly, g-force, is a measurement of the type of force per unit mass – typically acceleration – that causes a perception of weight, with a g-force of 1 g (standard gravity force; not gram in mass measurement) equal to the conventional value of gravitational acceleration on Earth, g, of about 9.8m/s2. Since g-forces indirectly produce weight, any g-force can be described as a "weight per unit mass" (see the synonym specific weight).
The standard acceleration due to gravity (or standard acceleration of free fall), sometimes abbreviated as standard gravity, usually denoted by ɡ0 or ɡn, is the nominal gravitational acceleration of an object in a vacuum near the surface of the Earth. It is defined by standard as . This value was established by the 3rd General Conference on Weights and Measures (1901, CR 70) and used to define the standard weight of an object as the product of its mass and this nominal acceleration.
The gram (originally gramme; SI unit symbol g) is a unit of mass in the International System of Units (SI) equal to one one thousandth of a kilogram. Originally defined as of 1795 as "the absolute weight of a volume of pure water equal to the cube of the hundredth part of a metre [1 cm3], and at the temperature of melting ice", the defining temperature (~0 °C) was later changed to 4 °C, the temperature of maximum density of water. However, by the late 19th century, there was an effort to make the base unit the kilogram and the gram a derived unit.
Explores the principles and applications of strain gauges in force and torque sensors, including compensation methods and performance characteristics.
Analyzes the motion of a ball on a hemisphere surface with forces and equations of motion.
Delves into the capstan phenomenon, analyzing the relationship between rope turns and weight in equilibrium through analytical and experimental methods.
Kirigami is the art of paper cutting, and it is emerging as an elegant design and manufacturing solution in mechanical metamaterials. Currently, the majority of kirigami designs focus on shape-morphing, but there is little attention on the remarkable mecha ...
WILEY-V C H VERLAG GMBH2022
,
Weight loss is key to controlling the increasing prevalence of metabolic syndrome (MS) and its components, i.e., central obesity, hypertension, prediabetes and dyslipidaemia. The goals of our study were two-fold. First, we characterised the relationships ...
Shape Memory Alloy (SMA) based actuators have been commonly used in applications that require being compact and lightweight. In this paper, the inherent stiffness of a flexure-based linear guide is used to create a bias-spring SMA actuator which further re ...